Abstract

Computationally efficient and accurate simulations of the flow over axisymmetric bodies of revolution (ABR) have been an important desideratum for engineering design. In this article, the flow field over an ABR is predicted using machine learning (ML) algorithms (e.g., random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN)) using trained ML models as surrogates for classical computational fluid dynamics (CFD) approaches. The data required for the development of the ML models were obtained from high fidelity Reynolds stress transport model (RSTM)-based simulations. The flow field is approximated as functions of x and y coordinates of locations in the flow field and the velocity at the inlet of the computational domain. The optimal hyperparameters of the trained ML models are determined using validation. The trained ML models can predict the flow field rapidly and exhibit orders of magnitude speedup over conventional CFD approaches. The predicted results of pressure, velocity, and turbulence kinetic energy are compared with the baseline CFD data. It is found that the ML-based surrogate model predictions are as accurate as CFD results. This investigation offers a framework for fast and accurate predictions for a flow scenario that is critically important in engineering design.

References

1.
Reddy
,
M. D.
, and
Pant
,
R. S.
,
2018
, “
CFD Analysis of Axisymmetric Bodies of Revolution Using Openfoam
,”
2018 Applied Aerodynamics Conference
,
Atlanta, GA
,
June 25
, p.
3334
.
2.
Disotell
,
K. J.
, and
Rumsey
,
C. L.
,
2017
, “
Design of an Axisymmetric Afterbody Test Case for CFD Validation
,”
23rd AIAA Computational Fluid Dynamics Conference
,
Denver, CO
,
June 5–9
, p.
3792
.
3.
Akolekar
,
H.
,
Pook
,
D.
, and
Ranmuthugala
,
D.
,
2020
, “
CFD-Based Boundary Layer Prediction of Axisymmetric Bodies of Revolution
,”
22nd Australasian Fluid Mechanics Conference AFMC2020
,
Brisbane, Australia
,
Dec. 7–10
, The University of Queensland, Australia.
4.
Williams
,
O.
,
Samuell
,
M.
,
Sarwas
,
E. S.
,
Robbins
,
M.
, and
Ferrante
,
A.
,
2020
, “
Experimental Study of a CFD Validation Test Case for Turbulent Separated Flows
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
0092
.
5.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.
6.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.
7.
Panda
,
J.
, and
Warrior
,
H.
,
2022
, “
Modelling the Pressure Strain Correlation in Turbulent Flows Using Deep Neural Networks
,”
Proc. Inst. Mech. Eng. C J Mech. Eng. Sci.
236
(
7
), pp.
3447
3458
.
8.
Panda
,
J.
,
2019
, “
A Review of Pressure Strain Correlation Modeling for Reynolds Stress Models
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
234
(
8
), p.
0954406219893397
.
9.
Wang
,
Z.
,
Luo
,
K.
,
Li
,
D.
,
Tan
,
J.
, and
Fan
,
J.
,
2018
, “
Investigations of Data-Driven Closure for Subgrid-Scale Stress in Large-Eddy Simulation
,”
Phys. Fluids
,
30
(
12
), p.
125101
.
10.
Tracey
,
B. D.
,
Duraisamy
,
K.
, and
Alonso
,
J. J.
,
2015
, “
A Machine Learning Strategy to Assist Turbulence Model Development
,”
53rd AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 5–9
, p.
1287
.
11.
Xie
,
C.
,
Yuan
,
Z.
, and
Wang
,
J.
,
2020
, “
Artificial Neural Network-Based Nonlinear Algebraic Models for Large Eddy Simulation of Turbulence
,”
Phys. Fluids
,
32
(
11
), p.
115101
.
12.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.
13.
Miyanawala
,
T.
, and
Jaiman
,
R. K.
,
2019
, “
A Hybrid Data-Driven Deep Learning Technique for Fluid–Structure Interaction
,”
International Conference on Offshore Mechanics and Arctic Engineering, Vol. 58776
,
Glasgow, Scotland, UK
,
June 9–14
,
American Society of Mechanical Engineers
, p.
V002T08A004
.
14.
Bukka
,
S. R.
,
Magee
,
A. R.
, and
Jaiman
,
R. K.
,
2020
, “
Deep Convolutional Recurrent Autoencoders for Flow Field Prediction
,”
International Conference on Offshore Mechanics and Arctic Engineering, Vol. 84409
,
Fort Lauderdale, FL
,
June 28–July 3
,
American Society of Mechanical Engineers
, p.
V008T08A005
.
15.
Sekar
,
V.
,
Jiang
,
Q.
,
Shu
,
C.
, and
Khoo
,
B. C.
,
2019
, “
Fast Flow Field Prediction Over Airfoils Using Deep Learning Approach
,”
Phys. Fluids
,
31
(
5
), p.
057103
.
16.
Hui
,
X.
,
Bai
,
J.
,
Wang
,
H.
, and
Zhang
,
Y.
,
2020
, “
Fast Pressure Distribution Prediction of Airfoils Using Deep Learning
,”
Aerospace Sci. Technol.
,
105
, p.
105949
.
17.
Renganathan
,
S. A.
,
Maulik
,
R.
, and
Rao
,
V.
,
2020
, “
Machine Learning for Nonintrusive Model Order Reduction of the Parametric Inviscid Transonic Flow Past an Airfoil
,”
Phys. Fluids
,
32
(
4
), p.
047110
.
18.
Kong
,
C.
,
Chang
,
J.
,
Li
,
Y.
, and
Wang
,
Z.
,
2021
, “
A Deep Learning Approach for the Velocity Field Prediction in a Scramjet Isolator
,”
Phys. Fluids
,
33
(
2
), p.
026103
.
19.
Hasegawa
,
K.
,
Fukami
,
K.
,
Murata
,
T.
, and
Fukagata
,
K.
,
2020
, “
Machine-Learning-Based Reduced-Order Modeling for Unsteady Flows Around Bluff Bodies of Various Shapes
,”
Theor. Comput. Fluid Dyn.
,
34
(
4
), pp.
1
17
.
20.
Lee
,
S.
, and
You
,
D.
,
2021
, “
Analysis of a Convolutional Neural Network for Predicting Unsteady Volume Wake Flow Fields
,”
Phys. Fluids
,
33
(
3
), p.
035152
.
21.
Heyse
,
J. F.
,
Mishra
,
A. A.
, and
Iaccarino
,
G.
,
2021
, “
Estimating RANS Model Uncertainty Using Machine Learning
,”
J. Glob. Power Propuls. Soc. Spec. Issue: Data-Driven Model. High-Fidelity Simul.
,
2021
, pp.
1
14
.
22.
Leer
,
M.
, and
Kempf
,
A.
,
2021
, “
Fast Flow Field Estimation for Various Applications With a Universally Applicable Machine Learning Concept
,”
Flow Turbulence Combust.
,
107
(
1
), pp.
175
200
.
23.
Kashefi
,
A.
,
Rempe
,
D.
, and
Guibas
,
L. J.
,
2021
, “
A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries
,”
Phys. Fluids
,
33
(
2
), p.
027104
.
24.
Jagadeesh
,
P.
,
Murali
,
K.
, and
Idichandy
,
V.
,
2009
, “
Experimental Investigation of Hydrodynamic Force Coefficients Over AUV Hull Form
,”
Ocean Eng.
,
36
(
1
), pp.
113
118
.
25.
Huang
,
T.
,
Santelli
,
N.
, and
Belt
,
G.
,
1978
, “
Stern Boundary-Layer Flow on Axisymmetric Bodies
,”
Twelfth Symposium on Naval Hydrodynamics
,
Washington, DC
,
June 5–9
, pp.
125
167
.
26.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
27.
Fukami
,
K.
,
Fukagata
,
K.
, and
Taira
,
K.
,
2020
, “
Assessment of Supervised Machine Learning Methods for Fluid Flows
,”
Theor. Comput. Fluid Dyn.
,
34
(
4
), pp.
497
519
.
28.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2010
, “
Pressure–Strain Correlation Modeling: Towards Achieving Consistency With Rapid Distortion Theory
,”
Flow Turbulence Combust.
,
85
(
3–4
), pp.
593
619
.
29.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2013
, “
Intercomponent Energy Transfer in Incompressible Homogeneous Turbulence: Multi-point Physics and Amenability to One-Point Closures
,”
J. Fluid Mech.
,
731
, pp.
639
681
.
30.
Panda
,
J.
, and
Warrior
,
H.
,
2018
, “
A Representation Theory-Based Model for the Rapid Pressure Strain Correlation of Turbulence
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081101
.
31.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2017
, “
Toward Approximating Non-Local Dynamics in Single-Point Pressure–Strain Correlation Closures
,”
J. Fluid Mech.
,
811
, pp.
168
188
.
32.
Panda
,
J. P.
, and
Warrior
,
H. V.
,
2021
, “
Numerical Studies on Drag Reduction of an Axisymmetric Body of Revolution With Antiturbulence Surface
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
6
), p.
060903
.
33.
Pope
,
S. B.
,
2001
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
34.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
35.
ansys
,
2011
, ansys fluent 14.0 User’s Guide, ansys.
36.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
37.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
,
Isard
,
M.
, and
Kudlur
,
M.
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,” 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16),
Savannah, GA
,
Nov. 2–4
, pp.
265
283
.
38.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “Adam: A Method for Stochastic Optimization,” preprint arXiv:1412.6980.
You do not currently have access to this content.