Abstract

The objective of the present study is estimating hydrodynamic forces acting on cylinders undergoing vortex-induced vibration (VIV) using dynamic mode decomposition (DMD). The cylinders are subjected to a uniform incoming flow at a laminar Reynolds number (Re = 250) and an upper transition Reynolds number (Re = 3.6 × 106) (Re = UD/ν defined based on the incoming flow U, the diameter of the cylinder D, and the viscosity of the fluid ν). Both a single cylinder and a configuration of piggyback cylinders are considered. Numerical simulations based on two-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations combined with the k−ω SST turbulence model are carried out to obtain the snapshots of the surrounding flow fields for DMD analysis. The DMD method is a powerful tool to obtain the spatial–temporal evolution characteristics of the coherent structures in the wake flow behind the cylinders. In the present study, this modal decomposition method is combined with a moving reference frame around the cylinders. The dominant DMD modes with their corresponding frequencies of the wake flows are identified and are used to reconstruct the flow fields. The large-scale shedding vortices are captured by the dominant modes. The reconstructed wake flow behind the cylinders is used to estimate the drag and lift forces on the cylinders combined with a force partitioning analysis.

References

1.
Zhao
,
M.
,
Cheng
,
L.
,
An
,
H.
, and
Lu
,
L.
,
2014
, “
Three-Dimensional Numerical Simulation of Vortex-Induced Vibration of an Elastically Mounted Rigid Circular Cylinder in Steady Current
,”
J. Fluids Struct.
,
50
, pp.
292
311
.
2.
Janocha
,
M. J.
, and
Ong
,
M. C.
,
2021
, “
Vortex-Induced Vibrations of Piggyback Pipelines Near the Horizontal Plane Wall in the Upper Transition Regime
,”
Mar. Struct.
,
75
, p.
102872
.
3.
Pires Vieira Serta
,
C.
,
Janocha
,
M. J.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
Numerical Simulations of Flow-Induced Vibrations of Two Rigidly Coupled Cylinders With Uneven Diameters in the Upper Transition Reynolds Number Regime
,”
J. Fluids Struct.
,
105
, p.
103332
.
4.
Lumley
,
J. L.
,
1967
, “The Structure of Inhomogeneous Turbulent Flows,”
Atmospheric Turbulence and Radio Wave Propagation
,
A.
Yaglom
, and
V.
Tatarsky
, eds.,
Nauka
,
Moscow
, pp.
166
178
.
5.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
6.
Liberge
,
E.
, and
Hamdouni
,
A.
,
2010
, “
Reduced Order Modelling Method via Proper Orthogonal Decomposition (POD) for Flow Around an Oscillating Cylinder
,”
J. Fluids Struct.
,
26
(
2
), pp.
292
311
.
7.
Freno
,
B. A.
, and
Cizmas
,
P. G.
,
2014
, “
A Proper Orthogonal Decomposition Method for Nonlinear Flows With Deforming Meshes
,”
Int. J. Heat Fluid Flow
,
50
, pp.
145
159
.
8.
Yao
,
W.
, and
Jaiman
,
R. K.
,
2017
, “
Model Reduction and Mechanism for the Vortex-Induced Vibrations of Bluff Bodies
,”
J. Fluid Mech.
,
827
, pp.
357
393
.
9.
Miyanawala
,
T. P.
, and
Jaiman
,
R. K.
,
2019
, “
Decomposition of Wake Dynamics in Fluid–Structure Interaction via Low-Dimensional Models
,”
J. Fluid Mech.
,
867
, pp.
723
764
.
10.
Wang
,
T. K.
, and
Shoele
,
K.
,
2021
, “
Geometrically Weighted Modal Decomposition Techniques
,”
J. Fluid Mech.
,
911
, pp. A41-1–A41-41.
11.
Shinde
,
V.
,
Longatte
,
E.
,
Baj
,
F.
,
Hoarau
,
Y.
, and
Braza
,
M.
,
2016
, “
A Galerkin-Free Model Reduction Approach for the Navier–Stokes Equations
,”
J. Comput. Phys.
,
309
, pp.
148
163
.
12.
Shinde
,
V.
,
Longatte
,
E.
,
Baj
,
F.
,
Hoarau
,
Y.
, and
Braza
,
M.
,
2019
, “
Galerkin-Free Model Reduction for Fluid-Structure Interaction Using Proper Orthogonal Decomposition
,”
J. Comput. Phys.
,
396
, pp.
579
595
.
13.
Shinde
,
V. J.
, and
Gaitonde
,
D. V.
,
2021
, “
Lagrangian Approach for Modal Analysis of Fluid Flows
,”
J. Fluid Mech.
,
928
, pp. A35-1–A35-39.
14.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.
15.
Noack
,
B. R.
,
Stankiewicz
,
W.
,
Morzyński
,
M.
, and
Schmid
,
P. J.
,
2016
, “
Recursive Dynamic Mode Decomposition of Transient and Post-Transient Wake Flows
,”
J. Fluid Mech.
,
809
, pp.
843
872
.
16.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.
17.
Ping
,
H.
,
Zhu
,
H.
,
Zhang
,
K.
,
Zhou
,
D.
,
Bao
,
Y.
,
Xu
,
Y.
, and
Han
,
Z.
,
2021
, “
Dynamic Mode Decomposition Based Analysis of Flow Past a Transversely Oscillating Cylinder
,”
Phys. Fluids
,
33
(
3
), p.
033604
.
18.
Guzmán-Iñigo
,
J.
,
Sodar
,
M. A.
, and
Papadakis
,
G.
,
2019
, “
Data-Based, Reduced-Order, Dynamic Estimator for Reconstruction of Nonlinear Flows Exhibiting Limit-Cycle Oscillations
,”
Phys. Rev. Fluids
,
4
(
11
), p.
114703
.
19.
Yu
,
M.
,
Huang
,
W. X.
, and
Xu
,
C. X.
,
2019
, “
Data-Driven Construction of a Reduced-Order Model for Supersonic Boundary Layer Transition
,”
J. Fluid Mech.
,
874
, pp.
1096
1114
.
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
21.
Yang
,
K.
,
Cheng
,
L.
,
An
,
H.
,
Bassom
,
A. P.
, and
Zhao
,
M.
,
2013
, “
The Effect of a Piggyback Cylinder on the Flow Characteristics in Oscillatory Flow
,”
Ocean Eng.
,
62
, pp.
45
55
.
22.
Janocha
,
M. J.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
Modal Analysis of Wake Behind Stationary and Vibrating Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
4
), p.
041902
.
23.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
.
24.
Statnikov
,
V.
,
Sayadi
,
T.
,
Meinke
,
M.
,
Schmid
,
P.
, and
Schröder
,
W.
,
2015
, “
Analysis of Pressure Perturbation Sources on a Generic Space Launcher After-Body in Supersonic Flow Using Zonal Turbulence Modeling and Dynamic Mode Decomposition
,”
Phys. Fluids
,
27
(
1
), p.
016103
.
25.
Wu
,
W.
,
Meneveau
,
C.
, and
Mittal
,
R.
,
2020
, “
Spatio-Temporal Dynamics of Turbulent Separation Bubbles
,”
J. Fluid Mech.
,
883
, pp. A45-1–A45-37.
26.
Ohmichi
,
Y.
,
2017
, “
Preconditioned Dynamic Mode Decomposition and Mode Selection Algorithms for Large Datasets Using Incremental Proper Orthogonal Decomposition
,”
AIP Adv.
,
7
(
7
), p.
075318
.
27.
Matsumoto
,
D.
, and
Indinger
,
T.
,
2017
, “
On-the-Fly Algorithm for Dynamic Mode Decomposition Using Incremental Singular Value Decomposition and Total Least Squares
,”
arXiv preprint
.
28.
Yin
,
G.
, and
Ong
,
M. C.
,
2020
, “
On the Wake Flow Behind a Sphere in a Pipe Flow at Low Reynolds Numbers
,”
Phys. Fluids
,
32
(
10
), p.
103605
.
29.
Menon
,
K.
, and
Mittal
,
R.
,
2020
, “
Dynamic Mode Decomposition Based Analysis of Flow Over a Sinusoidally Pitching Airfoil
,”
J. Fluids Struct.
,
94
, p.
102886
.
30.
Chang
,
C. C.
,
1992
, “
Potential Flow and Forces for Incompressible Viscous Flow
,”
Proc. R. Soc. London, A
,
437
(
1901
), pp.
517
525
.
31.
Martín-Alcántara
,
A.
,
Fernandez-Feria
,
R.
, and
Sanmiguel-Rojas
,
E.
,
2015
, “
Vortex Flow Structures and Interactions for the Optimum Thrust Efficiency of a Heaving Airfoil at Different Mean Angles of Attack
,”
Phys. Fluids
,
27
(
7
), p.
073602
.
32.
Moriche
,
M.
,
Flores
,
O.
, and
García-Villalba
,
M.
,
2017
, “
On the Aerodynamic Forces on Heaving and Pitching Airfoils at Low Reynolds Number
,”
J. Fluid Mech.
,
828
, pp.
395
423
.
33.
Zhang
,
K.
,
Hayostek
,
S.
,
Amitay
,
M.
,
He
,
W.
,
Theofilis
,
V.
, and
Taira
,
K.
,
2020
, “
On the Formation of Three-Dimensional Separated Flows Over Wings Under Tip Effects
,”
J. Fluid Mech.
,
895
, pp. A9-1–A9-26.
34.
Menon
,
K.
, and
Mittal
,
R.
,
2021
, “
Quantitative Analysis of the Kinematics and Induced Aerodynamic Loading of Individual Vortices in Vortex-Dominated Flows: A Computation and Data-Driven Approach
,”
J. Comput. Phys.
,
443
, p.
110515
.
35.
Wang
,
S.
,
He
,
G.
, and
Liu
,
T.
,
2019
, “
Estimating Lift From Wake Velocity Data in Flapping Flight
,”
J. Fluid Mech.
,
868
, pp.
501
537
.
36.
Tong
,
W.
,
Yang
,
Y.
, and
Wang
,
S.
,
2021
, “
Estimating Thrust From Shedding Vortex Surfaces in the Wake of a Flapping Plate
,”
J. Fluid Mech.
,
920
, pp. A10-1–A10-26.
37.
Zheng
,
H.
,
Xie
,
F.
,
Zheng
,
Y.
,
Ji
,
T.
, and
Zhu
,
Z.
,
2019
, “
Propulsion Performance of a Two-Dimensional Flapping Airfoil With Wake Map and Dynamic Mode Decomposition Analysis
,”
Phys. Rev. E
,
99
(
6
), p.
063109
.
38.
Konstantinidis
,
E.
,
Dorogi
,
D.
, and
Baranyi
,
L.
,
2021
, “
Resonance in Vortex-Induced In-Line Vibration at Low Reynolds Numbers
,”
J. Fluid Mech.
,
907
, pp. A34-1–A34-35.
You do not currently have access to this content.