Abstract

Measurements of surface waves from oceanographic buoys have been regarded as the “ground truth” for validation of sea-state prediction models, providing the basis for input to the design of offshore structures. The engineering practice is to produce wave statistics of vertical surface displacements over periods of years. However, a wave buoy can provide simultaneous time histories of its motion, one vertically and the other two horizontally, giving the complete vector displacement field in time. We investigate the measured time histories of a wave buoy in three orthogonal directions and explore the relationship between them, for a relatively benign, so typical, sea state. We adopt a NewWave-type analysis to investigate the average shape of the large events across the measured time histories. In combination with a conditioning analysis, we give a reciprocity relationship between the vertical displacement of the wave buoy and those in the horizontal plane. The relationship is of value, as it allows for the prediction of wave kinematics in the horizontal plane based on the vertical measurement only. We observe significant second-order components in the measured data in the horizontal directions and smaller contributions vertically. This data-driven analysis paves the way for wave-by-wave prediction and the active control of wave energy converters and personnel transfers offshore.

References

1.
Datawell
,
B. V.
,
2006
, “Datawell Waverider Reference Manual,”
Datawell BV, Zumerlustraat
,
4
, p.
2012
. https://datawell.nl/products/directional-waverider-mkiii/
2.
Lindgren
,
G.
,
1970
, “
Some Properties of a Normal Process Near a Local Maximum
,”
Ann. Math. Stat.
,
41
(
6
), pp.
1870
1883
.
3.
Boccotti
,
P.
,
1983
, “
Some new Results on Statistical Properties of Wind Waves
,”
Appl. Ocean Res.
,
5
(
3
), pp.
134
140
.
4.
Taylor
,
P. H.
, and
Williams
,
B. A.
,
2004
, “
Wave Statistics for Intermediate Depth Water—NewWaves and Symmetry
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
1
), pp.
54
59
.
5.
Arena
,
F.
,
2005
, “
On Non-Linear Very Large Sea Wave Groups
,”
Ocean Eng.
,
32
(
11–12
), pp.
1311
1331
.
6.
Arena
,
F.
,
Ascanelli
,
A.
,
Nava
,
V.
,
Pavone
,
D.
, and
Romolo
,
A.
,
2005
, “
Three-Dimensional Nonlinear Random Wave Groups in Intermediate Water Depth
,”
Coastal Eng.
,
55
(
12
), pp.
1052
1061
.
7.
Romolo
,
A.
,
Arena
,
F.
, and
Laface
,
V.
,
2014
, “
A Generalized Approach to the Mechanics of Three-Dimensional Nonlinear Ocean Waves
,”
Probabilistic Eng. Mech.
,
35
, pp.
96
107
.
8.
Tucker
,
M. J.
, and
Pitt
,
E. G.
,
2001
,
Waves in Ocean Engineering
,
Elsevier Science Ltd
,
Oxford, UK
.
9.
Ding
,
Y.
,
Taylor
,
P. H.
,
Zhao
,
W.
,
Dory
,
J.
,
Hlophe
,
T.
, and
Draper
,
S.
,
2023
, “
Oceanographic Wave Buoy Motion as a 3D-Vector Field: Spectra, Linear Components and Bound Harmonics
,”
Appl. Ocean Res.
,
141
, p.
103777
.
10.
Thilleul
,
O.
, and
Perignon
,
Y.
,
2022
, “
SEM-REV Metocean Design Basis
,” Technical Report (Confidential).
11.
Zhao
,
W.
,
Taylor
,
P. H.
,
Wolgamot
,
H. A.
, and
Eatock Taylor
,
R.
,
2019
, “
Amplification of Random Wave Run-Up on the Front Face of a Box Driven by Tertiary Wave Interactions
,”
J. Fluid Mech.
,
869
, pp.
706
725
.
12.
Zhao
,
W.
,
Wolgamot
,
H. A.
,
Taylor
,
P. H.
, and
Eatock Taylor
,
R.
,
2017
, “
Gap Resonance and Higher Harmonics Driven by Focused Transient Wave Groups
,”
J. Fluid Mech.
,
812
, pp.
905
939
.
13.
Dean
,
R. G.
, and
Sharma
,
J. N.
,
1981
, “
Simulation of Wave Systems Due to Nonlinear Directional Spectra
,”
Proceedings of the International Symposium on Hydrodynamics in Coastal Engineering
,
Trondheim, Norway
,
Aug. 24–28
, pp.
1211
1222
.
14.
Dalzell
,
J. F.
,
1999
, “
A Note on Finite Depth Second-Order Wave-Wave Interactions
,”
Appl. Ocean Res.
,
21
(
3
), pp.
105
111
.
15.
Forristall
,
G. Z.
,
2000
, “
Wave Crest Distributions: Observations and Second-Order Theory
,”
J. Phys. Oceanogr.
,
30
(
8
), pp.
1931
1943
.
16.
Longuet Higgins
,
M.
,
1986
, “
Eulerian and Lagrangian Aspects of Surface Waves
,”
J. Fluid Mech.
,
173
, pp.
683
707
.
17.
Jonathan
,
P.
, and
Taylor
,
P. H.
,
1997
, “
On Irregular, Nonlinear Waves in a Spread Sea
,”
ASME J. Offshore Mech. Arct. Eng.
,
119
(
1
), pp.
37
41
.
18.
Grice
,
J. R.
,
Taylor
,
P. H.
, and
Eatock Taylor
,
R.
,
2013
, “
Near-Trapping Effects for Multi-Column Structures in Deterministic and Random Waves
,”
Ocean Eng.
,
58
, pp.
60
77
.
19.
Zhao
,
W.
,
Taylor
,
P. H.
,
Wolgamot
,
H. A.
, and
Eatock Taylor
,
R.
,
2018
, “
Identifying Linear and Nonlinear Coupling Between Fluid Sloshing in Tanks, Roll of a Barge and External Free-Surface Waves
,”
J. Fluid Mech.
,
844
, pp.
403
434
.
20.
Ohl
,
C. O. G.
,
Taylor
,
P. H.
,
Eatock Taylor
,
R.
, and
Borthwick
,
A. G. L.
,
2001
, “
Water Wave Diffraction by a Cylinder Array. Part 2. Irregular Waves
,”
J. Fluid Mech.
,
442
, pp.
33
66
.
21.
Forristall
,
G. Z.
, and
Ewans
,
K.
,
1998
, “
Worldwide Measurements of Directional Wave Spreading
,”
J. Atmos. Ocean. Technol.
,
15
(
2
), pp.
440
469
.
22.
Johannessen
,
T. B.
, and
Swan
,
C.
,
2001
, “
A Laboratory Study of the Focusing of Transient and Directionally Spread Surface Water Waves
,”
Proc. R. Soc. A
,
457
(
2008
), pp.
971
1006
.
23.
Mitsuyasu
,
H.
,
Tasai
,
F.
,
Suhara
,
T.
,
Mizuno
,
S.
,
Okhusa
,
M.
,
Honda
,
T.
, and
Rikiishi
,
K.
,
1975
, “
Observations of the Directional Spectrum of Ocean Waves Using a Cloverleaf Buoy
,”
J. Phys. Oceanogr.
,
5
(
4
), pp.
750
760
.
24.
Battjes
,
J. A.
,
Zitman
,
T. J.
, and
Holthuijsen
,
L. H.
,
1987
, “
A Reanalysis of the Spectra Observed in JONSWAP
,”
J. Phys. Oceanogr.
,
17
(
8
), pp.
1288
1295
.
25.
Forristall
,
G. Z.
,
1981
, “
Measurements of a Saturated Range in Ocean Wave Spectra
,”
J. Geophys. Res. Oceans
,
86
(
C9
), pp.
8075
8084
.
You do not currently have access to this content.