Abstract

Employing traditional Galerkin method, a coupled-mode flutter is predicted in the supercritical region of simply-supported pipes which constitutes a paradox since the internal flow effect is conservative and there is no energy to sustain the oscillation. Although there is a consensus that the flutter does not exist, the intrinsic mechanism remains to be clarified. This study has found that the internal flow induced Coriolis force term cannot be decoupled in traditional Galerkin method which leads to the dissatisfaction of the convergence conditions required in weighted residual approach (WRA). Moreover, the disparities in the predicted complex frequencies have been witnessed at different base function numbers when the internal flow velocity is sufficiently large. A modified Galerkin method adopting a new set of weighting functions is proposed based on WRA, and the Coriolis force term disappears by use of the orthogonality relations (it is stated that the Coriolis force is not directly omitted). Thus, a convergent solution for the set of residual functions which are identically equal to zeros can be guaranteed. Employing the modified method, the convergence in simulations is confirmed and the flutter phenomenon does not occur. This study can be a workbench for the study on the unsolved or partly solved issues in simulations of fluid-conveying pipes. Moreover, it has demonstrated that the predictions in traditional Galerkin method overestimate the natural frequencies, and it becomes more profound in higher-order natural modes at larger internal flow velocities which are of practice significance for dynamic analysis of flexible pipeline systems.

References

1.
Sazesh
,
S.
, and
Shams
,
S.
,
2019
, “
Vibration Analysis of Cantilever Pipe Conveying Fluid Under Distributed Random Excitation
,”
J. Fluid Struct.
,
87
, pp.
84
101
.
2.
Païdoussis
,
M. P.
,
2014
,
Fluid-Structure Interactions, Slender Structures and Axial Flow, Volume 1, 2nd ed.
,
Academic Press
,
California
.
3.
Cheng
,
Y.
,
Tang
,
L.
, and
Fan
,
T.
,
2020
, “
Dynamic Analysis of Deep-Water Steel Lazy Wave Riser With Internal Flow and Seabed Interaction Using a Nonlinear Finite Element Method
,”
Ocean Eng.
,
209
, p.
107498
.
4.
Duan
,
J.
,
Zhou
,
J.
,
You
,
Y.
, and
Wang
,
X.
,
2021
, “
Time-Domain Analysis of Vortex-Induced Vibration of a Flexible Mining Riser Transporting Flow With Various Velocities and Densities
,”
Ocean Eng.
,
220
, p.
108427
.
5.
Dai
,
Y.
,
Zhang
,
Y.
, and
Li
,
X.
,
2021
, “
Numerical and Experimental Investigations on Pipeline Internal Solid-Liquid Mixed Fluid for Deep Ocean Mining
,”
Ocean Eng.
,
223
, p.
108411
.
6.
Zhu
,
H.
,
Lin
,
P.
, and
Yao
,
J.
,
2016
, “
An Experimental Investigation of Vortex-Induced Vibration of a Curved Flexible Pipe in Shear Flows
,”
Ocean Eng.
,
121
, pp.
62
75
.
7.
Gao
,
X.
,
Shao
,
Y.
,
Chen
,
C.
,
Zhu
,
H.
, and
Li
,
K.
,
2022
, “
Experimental and Numerical Investigation on Transverse Impact Resistance Behaviour of Pipe-in-Pipe Submarine Pipelines After Service Time
,”
Ocean Eng.
,
248
, p.
110868
.
8.
Duan
,
J. L.
,
Chen
,
K.
,
You
,
Y. X.
, and
Li
,
J. L.
,
2018
, “
Numerical Investigation of Vortex-Induced Vibration of a Riser With Internal Flow
,”
Appl. Ocean Res.
,
72
, pp.
110
121
.
9.
Shahali
,
P.
,
Haddadpour
,
H.
, and
Kordkheili
,
S.
,
2020
, “
Non-Linear Dynamics of Viscoelastic Pipes Conveying Fluid Placed Within a Uniform External Cross Flow
,”
Appl. Ocean Res.
,
94
, p.
101970
.
10.
Meng
,
S.
,
Song
,
S.
,
Che
,
C.
, and
Zhang
,
W.
,
2018
, “
Internal Flow Effect on the Parametric Instability of Deep-Water Drilling Risers
,”
Ocean Eng.
,
149
, pp.
305
312
.
11.
Fang
,
H.
,
Dai
,
H.
,
Huang
,
Z.
, and
Wang
,
L.
,
2017
, “
Nonlinear Dynamics of a Fluid-Conveying Pipe Under the Combine Action of Cross-Flow and Top-End Excitations
,”
Appl. Ocean Res.
,
62
, pp.
199
209
.
12.
Xie
,
W.
,
Xin
,
W.
, and
Zhang
,
H.
,
2021
, “
Influence of the Internal Varying Density Flow on the Vibrations and Fatigue Damage of a Top-Tensioned Riser Undergoing Vortex-Induced Vibrations
,”
Appl. Ocean Res.
,
117
, p.
102955
.
13.
Chatjigeorgiou
,
I. K.
,
2017
, “
Hydroelastic Response of Marine Risers Subjected to Internal Slug-Flow
,”
Appl. Ocean Res.
,
62
, pp.
1
17
.
14.
Meléndez Vasquez
,
J. A.
, and
Julca Avila
,
J. P.
,
2019
, “
A Parametric Analysis of the Influence of the Internal Slug Flow on the Dynamic Response of Flexible Marine Risers
,”
Ocean Eng.
,
174
, pp.
169
185
.
15.
Wang
,
Y.
, and
Chen
,
N.-Z.
,
2022
, “
An Investigation on Vortex-Induced Vibration of a Flexible Riser Transporting Severe Slugging
,”
Ocean Eng.
,
246
, p.
110565
.
16.
Zhu
,
H.
,
Gao
,
Y.
,
Hu
,
J.
,
Zhao
,
H.
, and
Bao
,
Y.
,
2021
, “
Temporal-Spatial Mode Competition in Slug-Flow Induced Vibration of Catenary Flexible Riser in Both In Plane and Out of Plane
,”
Appl. Ocean Res.
,
117
, p.
102955
.
17.
Klaycham
,
K.
,
Athisakul
,
C.
, and
Chucheepsakul
,
S.
,
2020
, “
Large Amplitude Vibrations of a Deep-Water Riser Conveying Oscillatory Internal Fluid Flow
,”
Ocean Eng.
,
217
, p.
107966
.
18.
Païdoussis
,
M. P.
,
2005
, “
Some Unresolved Issues in Fluid-Structure Interactions
,”
J. Fluids Struct.
,
20
(
6
), pp.
871
890
.
19.
Kuiper
,
G. L.
, and
Metrikine
,
A. V.
,
2005
, “
Dynamic Stability of a Submerged, Free-Hanging Riser Conveying Fluid
,”
J. Sound Vib.
,
280
(
3–5
), pp.
1051
1065
.
20.
Kuiper
,
G. L.
,
Metrikine
,
A. V.
, and
Battjes
,
J. A.
,
2007
, “
A New Time-Domain Drag Description and Its Influence on the Dynamic Behavior of a Cantilever Pipe Conveying Fluid
,”
J. Fluid Struct.
,
23
(
3
), pp.
429
445
.
21.
Kuiper
,
G. L.
, and
Metrikine
,
A. V.
,
2008
, “
Experimental Investigation of Dynamic Stability of a Cantilevered Pipe Aspirating Fluid
,”
J. Fluid Struct.
,
24
(
4
), pp.
541
588
.
22.
Giacobbi
,
D. B.
,
Rinaldi
,
S.
,
Semler
,
C.
, and
PaÏdoussis
,
M. P.
,
2012
, “
The Dynamics of a Cantilevered Pipe Aspirating Fluid Studied by Experimental, Numerical and Analytical Methods
,”
J. Fluid Struct.
,
30
, pp.
73
96
.
23.
Modarres-Sadeghi
,
Y.
, and
Païdoussis
,
M. P.
,
2009
, “
Nonlinear Dynamics of Extensible Fluid-Conveying Pipes, Supported at Both Ends
,”
J. Fluid Struct.
,
25
(
3
), pp.
535
543
.
24.
Finlayson
,
B.
, and
Scriven
,
L. E.
,
1966
, “
The Method of Weighted Residuals—A Review
,”
ASME Appl. Mech. Rev.
,
19
(
9
), pp.
735
748
.
25.
Whitfield
,
A. H.
, and
Messali
,
N.
,
1989
, “
Weighted Residual Approaches to System Identification and Model Reduction
,”
Int. J. Syst. Sci.
,
20
(
4
), pp.
555
574
.
26.
Païdoussis
,
M. P.
, and
Issid
,
N.
,
1974
, “
Dynamic Stability of Pipes Conveying Fluid
,”
J. Sound Vib.
,
33
(
3
), pp.
267
294
.
27.
Ye
,
S.-Q.
,
Ding
,
H.
,
Wei
,
S.
,
Ji
,
J.-C.
, and
Chen
,
L.-Q.
,
2021
, “
Nontrivial Equilibriums and Natural Frequencies of a Slightly Curved Pipe Conveying Supercritical Fluid
,”
Ocean Eng.
,
227
, p.
108899
.
28.
Pavlou
,
D. G.
,
2020
, “
Inner Flow-Induced Buckling of Fiber-Reinforced Polymeric Catenary Risers
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
6
), p.
061801
.
29.
Yang
,
H. Z.
,
Wang
,
Z. Q.
, and
Xiao
,
F.
,
2017
, “
Parametric Resonance of Submerged Floating Pipelines With Bi-Frequency Parametric and Vortex-Induced Oscillations Excitations
,”
Ships Marine Struct.
,
12
, pp.
395
403
.
30.
Wang
,
Z.
, and
Yang
,
H.
,
2016
, “
Parametric Instability of a Submerged Floating Pipeline Between Two Floating Structures Under Combined Vortex Excitations
,”
Appl. Ocean Res.
,
59
, pp.
265
273
.
31.
Païdoussis
,
M. P.
,
Abdelbaki
,
A. R.
,
Butt
,
M. F. J.
,
Tavallaeinejad
,
M.
,
Moditis
,
K.
,
Misra
,
A. K.
,
Nahon
,
M.
, and
Ratigan
,
J. L.
,
2021
, “
Dynamics of a Cantilevered Pipe Subjected to Internal and Reverse External Flow: A Review
,”
J. Fluid Struct.
,
106
, p.
103349
.
32.
Mamaghani
,
A. E.
,
Mostoufi
,
N.
,
Sotudeh-Gharebagh
,
R.
, and
Zarghami
,
R.
,
2022
, “
Vibrational Analysis of Pipes Based on the Drift-Flux Two-Phase Flow Model
,”
Ocean Eng.
,
249
, p.
110917
.
33.
Balkaya
,
M.
, and
Kaya
,
M. O.
,
2021
, “
Analysis of the Instability of Pipes Conveying Fluid Resting on Two-Parameter Elastic Soil Under Different Boundary Conditions
,”
Ocean Eng.
,
241
, p.
110003
.
34.
Elnajjar
,
J.
, and
Daneshmand
,
F.
,
2020
, “
Stability of Horizontal and Vertical Pipes Conveying Fluid Under the Effects of Additional Point Masses and Springs
,”
Ocean Eng.
,
206
, p.
106943
.
35.
Cabrera-Miranda
,
J. M.
, and
Paik
,
J. K.
,
2019
, “
Two-Phase Flow Induced Vibrations in a Marine Riser Conveying a Fluid With Rectangular Pulse Train Mass
,”
Ocean Eng.
,
174
, pp.
71
83
.
36.
Hong
,
K.-S.
, and
Shah
,
U. H.
,
2018
, “
Vortex-Induced Vibrations and Control of Marine Risers. A Review
,”
Ocean Eng.
,
152
, pp.
300
315
.
37.
Song
,
L.
,
Fu
,
S.
,
Gao
,
J.
,
Ma
,
L.
, and
Wu
,
J.
,
2016
, “
An Investigation Into the Hydrodynamics of a Flexible Riser Undergoing Vortex-Induced Vibration
,”
J. Fluids Struct.
,
63
, pp.
325
350
.
You do not currently have access to this content.