Abstract

This work investigates the hydrodynamic performance of a subsea shuttle, an extra-large freight submarine, during near-seabed operation. The three-dimensional Reynolds-averaged Navier–Stokes method combined with the k − ω shear stress transport model is used to predict the pressure, skin friction, drag, and lift forces acting on the subsea shuttle. The present numerical model is verified and validated against the experimental and numerical data from the SUBOFF-1 project, a standard submarine model developed by the Defense Advanced Research Projects Agency. Two operational scenarios are considered in this study: (1) the subsea shuttle traveling near the seabed with a forward speed; (2) the subsea shuttle hovering close to the seabed and subject to an incoming current flow. A representative seabed boundary layer profile is considered in the analyses. A fully developed boundary layer profile is generated using 1D simulations and implemented as the inlet boundary condition in the 3D simulations. The effects of the gap ratio between the subsea shuttle and the seabed, and the inflow speed of the boundary layer flow on the hydrodynamic properties of the subsea shuttle are evaluated and discussed in detail.

References

1.
Jacobsen
,
L. R.
,
1971
, “
Subsea Transport of Arctic Oil—A Technical and Economic Evaluation
,”
Proceedings of Offshore Technology Conference
,
Dallas, TX
,
April 18–20
.
2.
Taylor
,
P. K.
, and
Montgomery
,
J. B.
,
1977
, “
Arctic Submarine Tanker System
,”
Proceedings of Offshore Technology Conference
,
Houston, TX
,
May 1–4
.
3.
Jacobsen
,
L.
,
Lawrence
,
K.
,
Hall
,
K.
,
Canning
,
P.
, and
Gardner
,
E.
,
1983
, “
Transportation of LNG From the Arctic by Commercial Submarine
,”
Marine Technol. SNAME News
,
20
(
4
), pp.
377
384
.
4.
Jacobsen
,
L. R.
, and
Murphy
,
J. J.
,
1983
, “
Submarine Transportation of Hydrocarbons From the Arctic
,”
Cold Reg. Sci. Technol.
,
7
, pp.
273
283
.
5.
Moloney
,
M. P.
,
1974
,
Submarine Tanker Concepts and Problems
,
National Maritime Research Center
,
New York
.
6.
Pavlenko
,
V.
, and
Tsagareli
,
D.
,
1996
, “
Underwater Arctic Transport System
,”
Proceedings of 6th International Offshore and Polar Engineering Conference
,
Los Angeles, CA
,
May 26–31
.
7.
Equinor Energy AS
,
2019
,
RD 662093-Subsea Shuttle System, Research Disclosure
.
8.
Ellingsen
,
K. E.
,
Ravndal
,
O.
,
Reinås
,
L.
,
Hansen
,
J. H.
,
Marra
,
F.
,
Myhre
,
E.
,
Dupuy
,
P. M.
, and
Sveberg
,
K.
,
2020
,
RD 677082-Subsea Shuttle System, Research Disclosure
.
9.
Xing
,
Y.
,
Ong
,
M. C.
,
Hemmingsen
,
T.
,
Ellingsen
,
K. E.
, and
Reinås
,
L.
,
2021
, “
Design Considerations of a Subsea Shuttle Tanker System for Liquid Carbon Dioxide Transportation
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
4
), p.
045001
.
10.
Ma
,
Y.
,
Xing
,
Y.
,
Ong
,
M. C.
, and
Hemmingsen
,
T. H.
,
2021
, “
Baseline Design of a Subsea Shuttle Tanker System for Liquid Carbon Dioxide Transportation
,”
Ocean Eng.
,
240
, p.
109891
.
11.
Ma
,
Y.
,
Xing
,
Y.
, and
Hemmingsen
,
T.
,
2021
, “
An Evaluation of Key Challenges of CO2 Transportation With a Novel Subsea Shuttle Tanker
,”
Proceedings of COTech & OGTech 2021
,
Stavanger, Norway
,
Nov. 25–26
, IOP Publishing.
12.
Xing
,
Y.
,
Santoso
,
T. A. D.
, and
Ma
,
Y.
,
2021
, “
Technical–Economic Feasibility Analysis of Subsea Shuttle Tanker
,”
J. Marine Sci. Eng.
,
10
(
1
), p.
20
.
13.
Ma
,
Y.
,
Xing
,
Y.
, and
Sui
,
D.
,
2022
, “
Trajectory Envelope of a Subsea Shuttle Tanker Hovering in Stochastic Ocean Current—Model Development and Tuning
,”
ASME J. Offshore Mech. Arctic Eng.
,
145
(
3
), p.
030901
.
14.
Mackay
,
M.
,
2003
,
Estimation of Submarine Near-Bottom Hydrodynamic Loads and Squat
,
Defence R&D Canada
,
Atlantic, Canada
.
15.
Tezdogan
,
T.
,
Incecik
,
A.
, and
Turan
,
O.
,
2016
, “
A Numerical Investigation of the Squat and Resistance of Ships Advancing Through a Canal Using CFD
,”
J. Marine Sci. Technol.
,
21
(
1
), pp.
86
101
.
16.
Xing
,
Y.
,
Janocha
,
M. J.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
CFD Investigation on Hydrodynamic Resistance of a Novel Subsea Shuttle Tanker
,”
J. Marine Sci. Eng.
,
9
(
12
), p.
1411
.
17.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
18.
Katsui
,
T.
,
Kajikawa
,
S.
, and
Inoue
,
T.
,
2012
, “
Numerical Investigation of Flow Around a ROV With Crawler Based Driving System
,”
Proceedings of 31st International Conference on Ocean, Offshore and Arctic Engineering, ASME
,
Rio de Janeiro, Brazil
,
July 1–6
.
19.
Shang
,
Z.
,
Emerson
,
D.
, and
Gu
,
X.
,
2012
, “
Numerical Investigations of Cavitation Around a High Speed Submarine Using OpenFOAM With LES
,”
Int. J. Comput. Meth.
,
9
(
3)
, p.
1250040
.
20.
Jones
,
D. A.
,
Chapuis
,
M.
,
Liefvendahl
,
M.
,
Norrison
,
D.
, and
Widjaja
,
R.
,
2016
,
RANS Simulations Using OpenFOAM Software, No. DST-Group-TR-3204, DST Group Defence Science and Technology Group, Victoria, Australia
.
21.
Fureby
,
C.
,
Anderson
,
B.
,
Clarke
,
D.
,
Erm
,
L.
,
Henbest
,
S.
,
Giacobello
,
M.
,
Jones
,
D.
, et al
,
2016
, “
Experimental and Numerical Study of a Generic Conventional Submarine at 10 deg Yaw
,”
Ocean Eng.
,
116
, pp.
1
20
.
22.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
Proceedings of 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference.
23.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
24.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Cañada, CA
.
25.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer.
26.
Davidson
,
L.
,
2022
,
Fluid Mechanics, Turbulent Flow and Turbulence Modeling
,
Chalmers University of Technology
,
Göteborg, Sweden
.
27.
American Society of Mechanical Engineering (ASME)
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
28.
Meana-Fernández
,
A.
,
Oro
,
J. M. F.
,
Díaz
,
K. M. A.
,
Galdo-Vega
,
M.
, and
Velarde-Suárez
,
S.
,
2019
, “
Application of Richardson Extrapolation Method to the CFD Simulation of Vertical-Axis Wind Turbines and Analysis of the Flow Field
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
359
376
.
29.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.
30.
Liu
,
H.-L.
, and
Huang
,
T. T.
,
1998
,
Summary of DARPA Suboff Experimental Program Data
,
Naval Surface Warfare Center
,
Carderock, MD
.
31.
Liu
,
Y.
,
Zhou
,
Z.
,
Zhu
,
L.
, and
Wnag
,
S.
,
2021
, “
Numerical Investigation of Flows Around an Axisymmetric Body of Revolution by Using Reynolds-Stress Model Based Hybrid Reynolds-Averaged Navier–Stokes/Large Eddy Simulation
,”
Phys. Fluids
,
33
(
8
), p.
085115
.
32.
Kumar
,
P.
, and
Mahesh
,
K.
,
2018
, “
Large-Eddy Simulation of Flow Over an Axisymmetric Body of Revolution
,”
J. Fluid Mech.
,
853
, pp.
537
563
.
33.
Yang
,
C.
, and
Lohner
,
R.
,
2003
, “
Prediction of Flows Over an Axisymmetric Body With Appendages
,”
The 8th International Conference on Numerical Ship Hydrodynamics
,
Busan, South Korea
,
Sept. 22–25
.
34.
Sezen
,
S.
,
Dogrul
,
A.
,
Delen
,
C.
, and
Bal
,
S.
,
2018
, “
Investigation of Self-Propulsion of DARPA Suboff by RANS Method
,”
Ocean Eng.
,
150
, pp.
258
271
.
35.
Li
,
J.
,
Zhang
,
Q.
, and
Chen
,
T.
,
2021
, “
Numerical Investigation of Internal Solitary Wave Forces on Submarine in Continuously Stratified Fluids
,”
J. Marine Sci. Eng.
,
9
(
12
), p.
1374
.
36.
Bolzon
,
M. D.
,
Kelso
,
R. M.
, and
Arjomandi
,
M.
,
2016
, “
Formation of Vortices on a Tubercled Wing, and Their Effects on Drag
,”
Aerosp. Sci. Technol.
,
56
, pp.
46
55
.
37.
Hansen
,
K. L.
,
Rostamzadeh
,
N.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2016
, “
Evolution of the Streamwise Vortices Generated Between Leading Edge Tubercles
,”
J. Fluid Mech.
,
788
, pp.
730
766
.
You do not currently have access to this content.