Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Due to the complexity of the integrated Floating Wind Turbine (FWT) system, obtaining reliable results necessitates extensive experiments. This paper conducts a comprehensive study on the motion performance and mooring load responses of a novel 12-MW semi-submersible FWT through model tests carried out in a wave basin. A multi-blade large-scale wind-generation system, equipped with a rectifier network, was enhanced and constructed to provide a dependable wind field. And a flexible tower was designed and fabricated, achieving an accurate simulation of the tower's stiffness characteristic and its impact on the overall dynamic response. The marine environmental conditions encompass various combinations of wind, waves, and currents. Rigorous calibration and identification tests were undertaken to validate the environmental conditions and the model system. The findings reveal that, under mild wave parameters, the mooring load is primarily influenced by the resonance response with platform motions, particularly surge resonance. The load effect of wind and current induces mean surge and pitch motions, while their damping effect reduces the standard deviation of responses, notably suppressing the pitch response peak at its natural motion frequency. Wave loads predominantly dictate the vibration range of motion responses. When the current velocity reaches a sufficient magnitude, the coupling effect between current and wave in the wave–frequency region significantly amplifies the mooring response. Notably, motions and mooring loads in the 60-deg and 90-deg directions surpass those in the 0-deg direction, with the maximum responses occurring at 60 deg.

References

1.
Komusanac
,
I.
,
Guy
,
B.
,
Daniel
,
F.
, and
Lizet
,
R.
,
2022
,
Wind Energy in Europe: Statistics and the Outlook for 2022–2026
,
Wind Europe
,
Brussels
.
2.
Cozzi
,
L.
,
Brent
,
W.
,
Connor
,
D.
,
Alberto
,
T.
,
Wilfred
,
Y.
,
Yasmine
,
A.
, and
Davide
,
D. A.
,
2019
,
Offshore Wind Outlook
,
International Energy Agency (IEA)
,
Paris, France
.
3.
Darwish
,
A. S.
,
2022
, “
Floating Offshore Wind Technology Development: Current State and Future Vision
,”
Sustainable Energy Development and Innovation: Selected Papers From the World Renewable Energy Congress (WREC) 2020
,
Brighton, UK
,
July 26–31
, Springer International Publishing, Cham, pp.
651
659
.
4.
Liu
,
Z.
,
2020
, “
Comparative Hydrodynamic Performance Analysis of Three Typical Kinds of Semi-Submersible Floating Foundation of Offshore Wind Turbine
,”
PhD dissertation
,
South China University of Technology
.
5.
Liu
,
Y.
,
Li
,
S.
,
Yi
,
Q.
, and
Chen
,
D.
,
2016
, “
Developments in Semi-Submersible Floating Foundations Supporting Wind Turbines: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
60
(
1
), pp.
433
449
.
6.
Robertson
,
A.
,
Jonkman
,
J.
,
Vorpahl
,
F.
,
Popko
,
W.
,
Qvist
,
J.
,
Frøyd
,
L.
, and
Guérinel
,
M.
,
2014
, “
Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
San Francisco, CA
,
June 8–13
.
7.
Robertson
,
A.
,
Jonkman
,
J.
,
Musial
,
W.
,
Vorpahl
,
F.
, and
Popko
,
W.
,
2013
, “
Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System
,”
NREL/CP-5000-60600
,
Frankfurt, Germany
,
Nov. 19–21
.
8.
Wen
,
B.
,
Li
,
Z.
,
Jiang
,
Z.
,
Peng
,
Z.
,
Dong
,
X.
, and
Tian
,
X.
,
2020
, “
Experimental Study on the Tower Loading Characteristics of a Floating Wind Turbine Based on Wave Basin Model Tests
,”
J. Wind Eng. Ind. Aerodyn.
,
207
(
1
), p.
104390
.
9.
Robertson
,
A.
,
Wendt
,
F.
,
Jonkman
,
J.
,
Popko
,
W.
,
Dagher
,
H. J.
,
Sebastien
,
G.
,
Qvist
,
J.
, et al
,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
(
1
), pp.
38
57
.
10.
Goupee
,
A. J.
,
Koo
,
B. J.
,
Kimball
,
R. W.
,
Lambrakos
,
K. F.
, and
Dagher
,
H. J.
,
2014
, “
Experimental Comparison of Three Floating Wind Turbine Concepts
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
020906
.
11.
Coulling
,
A. J.
,
Goupee
,
A. J.
,
Robertson
,
A. N.
,
Jonkman
,
J. M.
, and
Dagher
,
H. J.
,
2013
, “
Validation of a FAST Semi-Submersible Floating Wind Turbine Numerical Model With DeepCwind Test Data
,”
J. Renewable Sustainable Energy
,
5
(
2
), p.
023116
.
12.
Koo
,
B. J.
,
Goupee
,
A. J.
,
Kimball
,
R. W.
, and
Lambrakos
,
K. F.
,
2014
, “
Model Tests for a Floating Wind Turbine on Three Different Floaters
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
020907
.
13.
Zhao
,
Z.
,
Fan
,
Y.
,
Kuang
,
X.
,
Zhou
,
Y.
, and
Zhang
,
K.
,
2022
, “
Experimental Study on Dynamic Characteristics of a New Semi-Submersible Floating Wind Turbine
,”
J. Vib. Shock
,
41
(
20
), pp.
252
257
.
14.
Pham
,
T. D.
,
Kim
,
J.
,
Seo
,
B.
,
Kumar
,
R.
,
Yu
,
Y.
, and
Shin
,
H.
,
2019
, “
Global Responses and Loads Analysis of a 750-kW Semi-Submersible Floating Offshore Wind Turbine Under Extreme Environmental Conditions
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
,
St. Julian's, Malta
,
Nov. 3–6
.
15.
Mao
,
L.
,
Li
,
S.
,
Zang
,
Z.
,
Zhang
,
F.
, and
Huang
,
S.
,
2022
, “
Experimental Investigation on the Motion Response Characteristics of a Semi-Submersible Foundation for Wind Turbines
,”
Proceedings of the ISOPE International Ocean and Polar Engineering Conference
,
Shanghai, China
,
June 5–10
.
16.
Cao
,
Q.
,
Xiao
,
L.
,
Cheng
,
Z.
,
Liu
,
M.
, and
Wen
,
B.
,
2020
, “
Operational and Extreme Responses of a new Concept of 10 MW Semi-Submersible Wind Turbine in Intermediate Water Depth: An Experimental Study
,”
Ocean Eng.
,
217
(
1
), p.
108003
.
17.
Deng
,
W.
,
Guo
,
Y.
,
Liu
,
L.
,
Li
,
Y.
,
Jiang
,
Y.
, and
Xie
,
P.
,
2023
, “
Dynamic Response Analysis of a Floating Vertical Axis Wind Turbine With Helical Blades Based on the Model Test
,”
Ocean Eng.
,
273
(
1
), p.
113930
.
18.
Wen
,
B.
,
Tian
,
X.
,
Dong
,
X.
,
Li
,
Z.
,
Peng
,
Z.
,
Zhang
,
W.
, and
Wei
,
K.
,
2020
, “
Design Approaches of Performance-Scaled Rotor for Wave Basin Model Tests of Floating Wind Turbines
,”
Renewable Energy
,
148
(
1
), pp.
573
584
.
19.
Jie
,
Y.
,
He
,
Y.
,
Zhao
,
Y.
,
Shao
,
Y.
, and
He
,
C.
,
2020
, “
Current Effect on the Hydrodynamic Responses of Spar Type Floating Offshore Wind Turbine
,”
ISOPE International Ocean and Polar Engineering Conference
,
Virtual
,
Oct. 11–16
.
20.
Chen
,
J.
,
Hu
,
Z.
, and
Duan
,
F.
,
2018
, “
Comparisons of Dynamical Characteristics of a 5 MW Floating Wind Turbine Supported by a Spar-Buoy and a Semi-Submersible Using Model Testing Methods
,”
J. Renewable Sustainable Energy
,
10
(
5
), p.
053311
.
21.
Silva de Souza
,
C. E.
,
Berthelsen
,
P. A.
,
Eliassen
,
L.
,
Bachynski
,
E. E.
,
Engebretsen
,
E.
, and
Haslum
,
H.
,
2021
, “Definition of the INO WINDMOOR 12 MW Base Case Floating Wind Turbine,” SINTEF Ocean Report No. OC2020 A-044 v1, 2.
22.
Zhao
,
Y.
,
She
,
X.
,
He
,
Y.
,
Yang
,
J.
,
Peng
,
T.
, and
Kou
,
Y.
,
2018
, “
Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine
,”
China Ocean Eng.
,
32
(
2
), pp.
123
131
.
23.
Chen
,
X.
,
Tian
,
X.
,
Wen
,
B.
,
Jiang
,
Z.
,
Zhu
,
D.
,
Dong
,
Y.
, and
Wang
,
Y.
,
2023
, “
Development and Performance Evaluation of a Novel Wind Generation System for the Floating Wind Turbine Model Test
,”
Ocean Eng.
,
270
(
1
), p.
113384
.
24.
Orcina
,
2015
,
Orcaflex Manual 10.0a
,
Orcina Ltd
,
UK
.
25.
Duan
,
F.
,
Hu
,
Z.
, and
Niedzwecki
,
J. M.
,
2016
, “
Model Test Investigation of a Spar Floating Wind Turbine
,”
Mar. struct.
,
49
(
1
), pp.
76
96
.
You do not currently have access to this content.