Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Global demand for safety and sustainable offshore operations has led to great and dynamic changes in the maritime and offshore industry in recent years. This has made the industry to witness a rapid transformation in recent times with the digitalization of vessels, and anchor handling tug supply (AHTS) vessels are no exception. The digitalization of offshore operational vessels is expected to play an important role in the future and support the analysis of the automation and instrumentation market. The AHTS vessel is a specialized offshore support vessel used in the oil and gas industry, which serves multiple functions and roles that provide support for offshore drilling and production operations. The multi-functional purpose of AHTS vessels includes anchor handling, towing, supply and cargo transportation, oil spill clean-up response, and cable and pipe laying, among others. This requires the integration of multiple functional digitalized systems to optimize vessel operations, especially in harsh arctic environments. The current study reviews the importance and potential of AHTS vessels' digitalization and discusses its benefits, opportunities, and challenges. A systematic approach is adopted to explore the potential development and dynamics of digitalization in the maritime industry, focusing on AHTS vessels. This study finds that the extent of knowledge is evolving and requires an integrated approach to maritime digitalization to enhance operational efficiency, safety, and resilience in critical offshore operations.

References

1.
Ichimura
,
Y.
,
Dalaklis
,
D.
,
Kitada
,
M.
, and
Christodoulou
,
A.
,
2022
, “
Shipping in the Era of Digitalization: Mapping the Future Strategic Plans of Major Maritime Commercial Actors
,”
Digit. Bus.
,
2
(
1
), p.
100022
.
2.
Adumene
,
S.
,
Islam
,
R.
,
Amin
,
M. T.
,
Nitonye
,
S.
,
Yazdi
,
M.
, and
Theophilus-Johnson
,
K.
,
2022
, “
Advances in Nuclear Power System Design and Fault-Based Condition Monitoring Towards Safety of Nuclear-Powered Ships
,”
Ocean Eng.
,
251
, p.
111156
.
3.
Jeong
,
S. M.
,
Ji
,
H. J.
,
Jeong
,
K. L.
, and
Park
,
S.
,
2023
, “
Dispersion Simulations of Exhaust Smoke Discharged From Anchor-Handling Tug Supply Vessel Under Various Wind Conditions
,”
Appl. Sci.
,
2023
(
13
), p.
7752
.
4.
Dashtimanesha
,
A.
,
Ghaemic
,
M. H.
,
Wangd
,
Y.
,
Karczewskic
,
A.
,
Bilandia
,
R. N.
, and
Hirdarisd
,
S.
,
2022
, “
Digitalization of High-Speed Craft Design and Operation Challenges and Opportunities
,”
Procedia Comput. Sci.
,
200
, pp.
566
576
(3rd International Conference on Industry 4.0 and Smart Manufacturing).
5.
Det Norske Veritas
,
2021
, “Digitalization in the Maritime Industry,” https://www.dnv.com/maritime/insights/topics/digitalization-inthe-maritime-industry/index.html, Accessed May 24, 2021.
6.
Silva-Campillo
,
A.
,
Pérez-Arribas
,
F.
, and
Suárez-Bermejo
,
J. C.
,
2023
, “
Health-Monitoring Systems for Marine Structures: A Review
,”
Sensors
,
23
(
4
), pp.
1
19
.
7.
Raza
,
Z.
,
Woxenius
,
J.
,
Vural
,
C. A.
, and
Lind
,
M.
,
2023
, “
Digital Transformation of Maritime Logistics: Exploring Trends in the Liner Shipping Segment
,”
Comput. Ind.
,
145
(
November 2022
), p.
103811
.
8.
BIMCO
,
2021
, “Maritime Digitalization,” https://www.bimco.org/news-and-trends/maritime-digitalisation, Accessed May 24, 2021.
9.
Hirdaris
,
S.
, and
Cheng
,
F.
,
2012
, “
The Role of Technology in Green Ship Design
,”
Proceedings of the 11th International Marine Design Conference (IMDC)
,
Glasgow, UK
,
June 11–14
.
10.
Berescu
,
C.
, and
Bocanete
,
P.
,
2022
, “NX Ship Modeling for AHTS Ships Safety Management,” Constanta Maritime University, Constanta, Romania, file:///C:/NX_ship_modelilng_for_AHTS_ships_safety_management
11.
De Paula
,
N. O. B.
,
Dos Santos
,
M.
,
Gomes
,
C. F. S.
, and
Baldini
,
F.
,
2022
, “
CRITIC-MOORA-3N Application on a Selection of AHTS Ships for Offshore Operations
,”
9th International Conference on Information Technology and Quantitative Management
,
Beijing, China
,
Dec. 9–11
.
12.
Low
,
V.
, and
Gratz
,
P.
,
2013
, “Offshore Support Vessel,” MMA OFFSHORE Limited, Built by Jaya Asiatic Shipyard (Singapore Flag), https://www.mmaoffshore.com/vessel-fleet/mma-pride
13.
Boulougouris
,
E. K.
,
Papanikolaou
,
A. D.
,
Lemonaris
,
P.
, and
Konovessis
,
D.
,
2013
, “
Seakeeping Analysis of a Modern AHTS for Operation in Brazilian Offshore Waters
,”
OSV Singapore 2013 Jointly Organized by the Joint Branch of RINA & IMarEST
,
Singapore
,
Sept. 24–25
.
14.
Górski
,
Z.
, and
Giernalczyk
,
M.
,
2013
, “
Statistic Determination of Main Propulsion Power and Total Power of Onboard Electric Power Station on Anchor Handling Tug Supply Vessels AHTS Servicing Oil Rigs
,”
J. Polish CIMEEAC
,
7
(
1
).
15.
Nitonye
,
S.
,
Olla
,
O.
,
Ijala
,
O.
,
Okparajiaku
,
O. S.
,
Joe-Jim
,
S. A.
,
Kpegasin
,
P. Z.
, and
Amadigwe
,
S. C.
,
2022
, “
Comparative Analysis of the Propulsion System for a Tug Boat for Optimal Performance Using Aluminum or Steel Material
,”
Int. J. Adv. Eng. Manage.
,
4
(
6
), pp.
17
39
.
16.
Odokwo
,
V. E.
,
Theophilus-Johnson
,
K.
,
Nitonye
,
S.
, and
Ogbonnaya
,
E. A.
,
2022
, “
Influence of Optimized Propulsive Efficiencies on Decarbonization of Ship Emission
,”
J. Newviews Eng. Technol.
,
4
(
2
), pp.
18
28
.
17.
International Maritime Organization (IMO)
,
2018
, “Autonomous Shipping (Based on the IMO’s Strategic Plan),” https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx, Accessed June 25, 2021.
18.
Gunnu
,
G. R.
, and
Moan
,
T.
,
2017
, “
An Assessment of Anchor Handling Vessel Stability During Anchor Handling Operations Using the Method of Artificial Neural Networks
,”
Ocean Eng.
,
140
, pp.
292
308
.
19.
James
,
M. B.
,
Orji
,
C. U.
, and
Nitonye
,
S.
,
2021
, “
Bourbon Helene Hull Form Optimization for Improved Hydrodynamic Performance
,”
Int. J. Adv. Eng. Manage.
,
3
(
10
), pp.
960
974
.
20.
Nitonye
,
S.
, and
Adumene
,
S.
,
2015
, “
Predictive Analysis of Bare-Hull Resistance of a 25,000 DWT Tanker Vessel
,”
Int. J. Eng. Technol.
,
5
(
4
), pp.
194
198
.
21.
Costa
,
I. P.
,
Basílio
,
M. P. A.
,
Maêda
,
S. M.
,
Rodrigues
,
M. V. G.
,
Moreira
,
M. A. L.
,
Gomes
,
C. F. S.
, and
dos Santos
,
M.
,
2021
, “
Algorithm Selection for Machine Learning Classification: An Application of the MELCHIOR Multicriteria Method
,”
Front. Artif. Intell. Appl.
,
341
, pp.
154
161
.
22.
Dutopo
,
H.
,
Marwanto
,
A.
,
Alifah
,
S.
, and
Hidayah
,
M.
,
2022
, “
Improved Ship Position Stability on Offshore-Based Dynamic Position Maintenance With the PID Method
,”
Technium
,
4
(
6
), pp.
99
112
.
23.
Iwańkowicz
,
R.
, and
Rutkowski
,
R.
,
2023
, “
Digital Twin of Shipbuilding Process in Shipyard
,”
Sustainability
,
15
(
12
), p.
9733
.
24.
Diaz
,
R.
,
Smith
,
K.
,
Bertagna
,
S.
, and
Bucci
,
V.
,
2022
, “
Digital Transformation, Applications, and Vulnerabilities in Maritime and Shipbuilding Ecosystems
,”
Procedia Comput. Sci.
,
217
(
2022
), pp.
1396
1405
.
25.
Makkonen
,
H.
,
Nordberg-Davies
,
S.
,
Saarni
,
J.
, and
Huikkola
,
T.
,
2022
, “
A Contextual Account of Digital Servitization Through Autonomous Solutions: Aligning a Digital Servitization Process and a Maritime Service Ecosystem Transformation to Autonomous Shipping
,”
Ind. Mark. Manage.
,
102
, pp.
546
563
.
26.
Meštrović
,
I. T.
,
Kezić
,
D.
,
Maljković
,
M.
, and
Laušić
,
M.
,
2022
, “
PETRI NET Model of AHTS/PSV Supply Vessel and Crew Boat Usability in North Adriatic on Gas Field
,”
ICTS 2022 Portoroz
,
Portoroz, Slovenia
,
May 23–24
.
27.
Hancox
,
M.
,
1991
,
Supply Ship Operations
,
Oilfield Seamanship
,
London
.
28.
Singh
,
B.
,
2019
, “Features, Applications, and Limitations of Anchor Handling Tug Supply Vessels (AHTS),” https://www.marineinsight.com/types-of-ships/features-applications-and-limitations-of-anchor-handling-tug-supply-vessels-ahts/
29.
Islam
,
M.
,
Lau
,
M.
,
Brown
,
J.
,
Gash
,
R.
,
Pearson
,
W.
, and
Mills
,
J.
,
2022
, “
Investigation of the Effects of Managed Ice Field Characteristics on a Dynamic Positioning AHTS Vessel Using Physical Modelling Techniques
,”
Ocean Eng.
,
246
, p.
110485
.
30.
Mauro
,
F.
,
2021
, “
Thrusters Modelling for Escort Tug Capability Predictions
,”
Ocean Eng.
,
229
, p.
108967
.
31.
Perabo
,
F.
,
Park
,
D.
,
Zadeh
,
M. K.
,
Smogeli
,
O.
, and
Jamt
,
L.
,
2020
, “
Digital Twin Modelling of Ship Power and Propulsion Systems: Application of the Open Simulation Platform (OSP)
,”
IEEE International Symposium on Industrial Electronics
,
Delft, The Netherlands
,
June 17–19
, pp.
1265
1270
.
32.
Nitonye
,
S.
,
2017
, “
Numerical Analysis for the Design of the Fuel System of a Sea Going Tugboat in the Niger Delta
,”
World J. Eng. Res. Technol.
,
3
(
1
), pp.
161
177
.
33.
Nitonye
,
S.
,
2017
, “
Design Calculations for the Cooling Water System of a Tugboat
,”
World J. Eng. Res. Technol.
,
3
(
4
), pp.
9
26
.
34.
Pipchenko
,
O. D.
,
Tsymbal
,
M.
, and
Shevchenko
,
V.
,
2018
, “
Recommendations for Training of Crews Working on Diesel-Electric Vessels Equipped With Azimuth Thrusters
,”
TransNav Int. J. Mar. Navigation Saf. Sea Transp.
,
12
(
3
), pp.
567
571
.
35.
Piaggio
,
B.
,
Viviani
,
M.
,
Martelli
,
M.
, and
Figari
,
M.
,
2022
, “
Z-Drive Escort Tug Maneuverability Model and Simulation, Part II: A Full-Scale Validation
,”
Ocean Eng.
,
259
, p.
111881
.
36.
Ofanson
,
U.
,
Tamunodukobipi
,
D. T.
, and
Nitonye
,
S.
,
2022
, “
Failure Mode Effects and Criticality Analysis (FMECA) Using Fuzzy Logic for Ship Dynamic Positioning (DP) Systems
,”
Glob. J. Eng. Technol. Adv.
,
13
(
1
), pp.
038
052
.
37.
Pacuraru
,
S.
,
Domnisoru
,
L.
, and
Bekhit
,
A.
,
2022
, “
Numerical Simulation for the Motion Response of an Offshore AHTS Ship in Regular and Irregular Waves
,”
Int. J. Mod. Manuf. Technol.
,
14
(
3
), pp.
181
190
.
38.
Baidowi
,
A.
,
Cahyono
,
B.
,
Ardhiansyah
,
F.
, and
Nugroho
,
T. F.
,
2020
, “
Station-Keeping Analysis of an FPSO to Prevent Collision With SPM Using AHTS
,”
Maritime Safety International Conference. IOP Conf. Series: Earth and Environmental Science
, Vol. 557, p.
012055
.
39.
Piaggio
,
B.
,
Viviani
,
M.
,
Martelli
,
M.
, and
Figari
,
M.
,
2021
, “
Z-Drive Escort Tug Maneuverability Modelling: From Model Scale to Full-Scale Validation
,”
Dev. Marit. Technol. Eng.
, pp.
207
216
.
40.
Roslana
,
S. B.
,
Konovessisb
,
D.
,
Angc
,
J. H.
,
Menonc
,
N. V.
, and
Tay
,
Z. Y.
,
2023
, “
Modelling and Operation of a Hybrid LNG Propulsion Tugboat
,”
ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering
,
Melbourne, Australia
,
June 11–16
.
41.
Jing
,
L.
,
Wang
,
T.
,
Tang
,
W.
,
Liu
,
W.
, and
Qu
,
R.
,
2023
, “
Characteristic Analysis of the Magnetic Variable Speed Diesel–Electric Hybrid Motor With Auxiliary Teeth for Ship Propulsion
,”
IEEE ASME Trans. Mechatron.
, (
99
), pp.
1
11
.
42.
Schubert
,
A.
,
Koschorrek
,
P.
,
Kurowski
,
M.
,
Lampe
,
B. P.
, and
Jeinsch
,
T.
,
2016
, “
Roll Damping Using Voith Schneider Propeller: A Repetitive Control Approach
,”
IFAC-PapersOnLine
,
49
(
23
), pp.
557
561
.
43.
Nitonye
,
S.
,
Adumene
,
S.
,
Orji
,
C. U.
, and
Udo
,
A. E.
,
2021
, “
Operational Failure Assessment of Remotely Operated Vehicle (ROV) in Harsh Offshore Environments
,”
Sci. J. Mar. Res.
,
35
(
2021
), pp.
275
286
.
44.
Moharir
,
S.
,
Thomas
,
D.
,
Varghese
,
C.
, and
Kamal
,
F. R.
,
2023
, “
Integrated Bridge in Offshore Topsides
,”
Installation Engineering Conference: ADIPEC
,
Abu Dhabi, UAE
,
Oct. 2–5
.
45.
Hancox
,
M.
,
1992
,
Anchor Handling
, Vol. 3,
Oilfield Seamanship
,
London
.
46.
Sanchez-Varela
,
Z.
,
Boullosa-Falces
,
D.
,
Larrabe-Barrena
,
J. L.
, and
Gómez-Solaetxe
,
M. A.
,
2018
, “
Incident Evaluation During Operations Carried Out By Anchor Handler Tug Vessels
,”
J. Marit. Res.
,
15
(
1
), pp.
20
23
.
47.
Queiroz
,
M.
,
Telles
,
R.
, and
Hamaji
,
E. Y.
,
2018
, “
Innovations in the Brazilian Offshore Support Vessel Chain: A Content Analysis Approach
,”
Rev. Científica Hermes—FIPEN
,
21
, pp.
400
418
.
48.
Pipchenkol
,
O.
,
Konon
,
N.
, and
Bogachenko
,
Y.
,
2023
, “
‘Mathematical Modelling of Asd Tug—Marine Vessel’ Interaction Considering Tug’s Maneuverability and Stability Limitations
,”
J. Marit. Res.
,
20
(
2
), pp.
117
124
.
49.
Piaggio
,
B.
,
Villa
,
D.
, and
Viviani
,
M.
,
2020
, “
Numerical Analysis of Escort Tug Maneuverability Characteristics
,”
Appl. Ocean Res.
,
97
, p.
102075
.
50.
Okafor
,
N.
,
2023
, “
Advances and Challenges in IoT Sensors Data Handling and Processing in Environmental Monitoring Systems
,”
TechRxiv.
, pp.
1
8
.
51.
Soleymani
,
S. A.
,
Goudarzi
,
S.
,
Kama
,
N.
,
Adli Ismail
,
S.
,
Ali
,
M.
,
Zainal
,
M. D.
, and
Zareei
,
M.
,
2020
, “
A Hybrid Prediction Model for Energy-Efficient Data Collection in Wireless Sensor Networks
,”
Symmetry
,
12
(
12
), p.
2020
.
52.
Piaggio
,
B.
,
Villa
,
D.
,
Viviani
,
M.
, and
Figari
,
M.
,
2020
, “
Numerical Analysis of Escort Tug Maneuverability Characteristics—Part II: The Skeg Effect
,”
Appl. Ocean Res.
,
100
, p.
102199
.
53.
Gunnu
,
G. R.
,
2017
, “
Safety and Efficiency Enhancement of Anchor Handling Operations With Particular Emphasis on the Stability of Anchor Handling Vessels
,”
Institut for Marine Teknikk
.
54.
Sarwito
,
S.
,
Kusuma
,
I. R.
,
Kurniawan
,
A.
, and
Prananda
,
J.
,
2022
, “
Short Circuit Analysis on AHTS Ship Due to Use of Closed-Circuit Electrical System
,”
6th International Conference on Marine Technology (SENTA 2021). IOP Conf. Series: Earth and Environmental Science
, Vol. 972, No. 1,
IOP Publishing
, p.
012057
.
55.
Santoso
,
A. D.
,
Cahyono
,
F. B.
,
Laksana
,
W. T.
, and
Nurfalah
,
Y.
,
2020
, “
Analysed Power Quality of Electrical System AHTS Vessel
,”
Res. Soc. Dev.
,
9
(
8
), p.
e836986151
.
56.
Alromaihi
,
S.
,
Elmedany
,
W.
, and
Balakrishna
,
C.
,
2018
, “
Cyber Security Challenges of Deploying IoT in Smart Cities for Healthcare Applications
,”
2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)
, pp.
140
145
.
57.
Hancox
,
M.
,
1996
,
Anchor Handling
,
Oilfield Seamanship
,
London
, p.
1996
.
58.
Gunnu
,
G. R.
, and
Moan
,
T.
,
2018
, “
Stability Assessment of Anchor Handling Vessels During Operations
,”
J. Mar. Sci. Technol.
,
23
(
2
), pp.
201
227
.
59.
Boko
,
Z.
,
Varela
,
Z. S.
,
Skoko
,
I.
, and
Boullosa-Falces
,
D.
,
2022
, “
General Classification of Anchor Handling Tug Supply Vessels By Gross Tonnage and Bollard Pull
,”
ICTS 2022 Portoroz
,
Portoroz, Slovenia
,
May 23–24
.
60.
Hancox
,
M.
,
1994
,
Towing
, Vol. 4,
Oilfield Seamanship
,
London
.
61.
Shibu
,
G.
, and
Devendiran
,
S.
,
2011
, “
Analysis of a Three-Layered Straight Wire Rope Strand Using Finite Element Method
,”
Proceedings of the World Congress on Engineering
,
London, UK
,
July 6–8
.
62.
Queiroz
,
M. M.
, and
Mendes
,
A. B.
,
2011
, “
Heuristic Approach for Solving a Pipe Layer Fleet Scheduling Problem
,”
Sustain. Marit. Transp. Exploit. Sea Resour.
, pp.
1073
1080
.
63.
Fagerholt
,
K.
,
2000
, “
Optimal Policies for Maintaining a Supply Service in the Norwegian Sea
,”
Omega
,
28
(
3
), pp.
269
275
.
64.
Yoo
,
J.
, and
Jo
,
Y.
,
2023
, “
Formulating Cybersecurity Requirements for Autonomous Ships Using the SQUARE Methodology
,”
Sensors
,
23
(
11
), p.
5033
.
65.
Yazdi
,
M.
,
Zarei
,
E.
,
Adumene
,
S.
, and
Beheshti
,
A.
,
2024
, “
Navigating the Power of Artificial Intelligence in Risk Management: A Comparative Analysis
,”
Safety
,
10
(
2
), pp.
1
49
.
66.
Hamid
,
A.
,
Nugroho
,
S.
,
Haryadi
,
G. D.
, and
Nugroho
,
A.
,
2019
, “
Failure Analysis of Sea Water Cooling Pump’s Shaft (SWCP) on Board Anchor Handling Tug Supply (AHTS)
,”
AIP Conf. Proc.
,
2202
, p.
020049
.
67.
Aytaç
,
A. E.
, and
Tuş
,
I. A.
,
2017
, “
The Multi-Objective Decision Making Methods Based on MULTIMOORA and MOOSRA for the Laptop Selection Problem
,”
J. Ind. Eng. Int.
,
13
(
2
), pp.
229
237
.
68.
Pipchenko
,
O. D.
,
2021
, “
Development of Theory and Practice for the Risk Management of Complex Navigational Tasks
,”
D.Sc. thesis
,
National University
,
Odessa
, pp.
161
169
. www.onma.edu.ua/wp-content/uploads/2016/09/Dyssertatsyya-Pypchenko-pechat.pdf
69.
Jardim
,
R.
,
Dos Santos
,
M.
,
Neto
,
E.
,
Muradas
,
F. M.
,
Santiago
,
B.
, and
Moreira
,
M.
,
2021
, “
Design of a Framework of Military Defense System for Governance of Geoinformation
,”
Procedia Comput. Sci.
,
199
, pp.
174
181
.
70.
Wennersberg
,
L.
,
2009
,
Modeling and Simulation of Anchor Handling Vessels
,
Norwegian University of Science and Technology—Department of Engineering Cybernetics
,
Norway
.
71.
Jović
,
M.
,
Tijan
,
E.
,
Brčić
,
D.
, and
Pucihar
,
A.
,
2022
, “
Digitalization in Maritime Transport and Seaports: Bibliometric, Content and Thematic Analysis
,”
J. Mar. Sci. Eng.
,
10
(
4
), p.
486
.
72.
Pipchenko
,
O. D.
,
Tsymbal
,
M.
, and
Shevchenko
,
V.
,
2020
, “
Features of an Ultra-Large Container Ship Mathematical Model Adjustment Based on the Results of Sea Trials
,”
TransNav Int. J. Mar. Navigation Saf. Sea Transp.
,
14
(
1
), pp.
163
170
.
73.
Nze
,
I. C.
,
Anyadiegwu
,
C. O.
, and
Nze
,
N. J.
,
2023
, “Dynamics of Outsourcing in the Offshore Supply Vessels (OSVs) Maintenance Market in Nigeria,” researchgate.net
74.
Aas
,
B.
,
Halskau
, Sr.,
Ø.
, and
Wallace
,
S. W.
,
2009
, “
The Role of Supply Vessels in Offshore Logistics
,”
Marit. Econ. Logist.
,
11
(
3
), pp.
302
325
.
75.
Piaggio
,
B.
,
Viviani
,
M.
,
Martelli
,
M.
, and
Figari
,
M.
,
2019
, “
Z-Drive Escort Tug Maneuverability Model and Simulation
,”
Ocean Eng.
,
191
, p.
106461
.
You do not currently have access to this content.