Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Multi-agent modeling is a challenging issue in intelligent systems, which is further compounded by heavy and complex traffic in maritime contexts. Trajectory forecasting can enhance operation safety. Nonetheless, effectively modeling interactions among vessels poses a significant difficulty. Toward this end, we propose a conditional variational autoencoder approach to ship trajectory prediction in a dynamic and multi-modal encounter situation. Leveraging a shared recurrent neural network architecture and attention mechanism, our method aggregates vessel trajectory data, enabling the model to learn and encapsulate meaningful encounter information across active vessels. We utilize automatic identification system data from the Oslofjord region to validate our approach. Through comprehensive experiments conducted on a four-ship encounter dataset, our proposed model demonstrates promising performance, by outperforming the benchmark models. Furthermore, we analyze the prediction model in a wide array of dimensions, showcasing its proficiency in complex ship behaviors learning, modeling ship interaction, and approximating actual trajectories.

References

1.
Rudenko
,
A.
,
Palmieri
,
L.
,
Herman
,
M.
,
Kitani
,
K. M.
,
Gavrila
,
D. M.
, and
Arras
,
K. O.
,
2020
, “
Human Motion Trajectory Prediction: A Survey
,”
Int. J. Rob. Res.
,
39
(
8
), pp.
895
935
.
2.
Perera
,
L. P.
, and
Soares
,
C. G.
,
2010
, “
Ocean Vessel Trajectory Estimation and Prediction Based on Extended Kalman Filter
,”
The Second International Conference on Adaptive and Self-Adaptive Systems and Applications
,
Lisbon, Portugal
,
Nov. 21–26
, pp.
14
20
.
3.
Fossen
,
S.
, and
Fossen
,
T. I.
,
2018
, “
Extended Kalman Filter Design and Motion Prediction of Ships Using Live Automatic Identification System (AIS) Data
,”
2018 2nd European Conference on Electrical Engineering and Computer Science (EECS)
, pp.
464
470
.
4.
Jia
,
C.
,
Ma
,
J.
,
Yang
,
X.
, and
Lv
,
X.
,
2023
, “
RAGAN: A Generative Adversarial Network for Risk-Aware Trajectory Prediction in Multi-Ship Encounter Situations
,”
Ocean Eng.
,
289
, p.
116188
.
5.
Liu
,
X.
,
He
,
W.
,
Xie
,
J.
, and
Chu
,
X.
,
2020
, “
Predicting the Trajectories of Vessels Using Machine Learning
,”
2020 5th International Conference on Control, Robotics and Cybernetics (CRC)
,
Wuhan, China
,
Oct. 16–18
, pp.
66
70
.
6.
Li
,
G.
,
Kawan
,
B.
,
Wang
,
H.
, and
Zhang
,
H.
,
2017
, “
Neural-Network-Based Modelling and Analysis for Time Series Prediction of Ship Motion
,”
Ship Technol. Res.
,
64
(
1
), pp.
30
39
.
7.
Tu
,
E.
,
Zhang
,
G.
,
Rachmawati
,
L.
,
Rajabally
,
E.
, and
Huang
,
G.-B.
,
2018
, “
Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology
,”
IEEE Trans. Intell. Transpor. Syst.
,
19
(
5
), pp.
1559
1582
.
8.
Xiao
,
Z.
,
Fu
,
X.
,
Zhang
,
L.
, and
Goh
,
R. S. M.
,
2020
, “
Traffic Pattern Mining and Forecasting Technologies in Maritime Traffic Service Networks: A Comprehensive Survey
,”
IEEE Trans. Intell. Transpor. Syst.
,
21
(
5
), pp.
1796
1825
.
9.
Zhang
,
X.
,
Fu
,
X.
,
Xiao
,
Z.
,
Xu
,
H.
, and
Qin
,
Z.
,
2022
, “
Vessel Trajectory Prediction in Maritime Transportation: Current Approaches and Beyond
,”
IEEE Trans. Intell. Transpor. Syst.
,
23
(
11
), pp.
19980
19998
.
10.
Murray
,
B.
, and
Perera
,
L. P.
,
2021
, “
An AIS-Based Deep Learning Framework for Regional Ship Behavior Prediction
,”
Reliab. Eng. & Syst. Saf.
,
215
, p.
107819
.
11.
Li
,
H.
,
Jiao
,
H.
, and
Yang
,
Z.
,
2023
, “
Ship Trajectory Prediction Based on Machine Learning and Deep Learning: A Systematic Review and Methods Analysis
,”
Eng. Appl. Artif. Intell.
,
126
, p.
107062
.
12.
Zhang
,
X.
,
Liu
,
J.
,
Gong
,
P.
,
Chen
,
C.
,
Han
,
B.
, and
Wu
,
Z.
,
2023
, “
Trajectory Prediction of Seagoing Ships in Dynamic Traffic Scenes Via a Gated Spatio-Temporal Graph Aggregation Network
,”
Ocean Eng.
,
287
, p.
115886
.
13.
Chen
,
X.
,
Zhang
,
H.
,
Deng
,
F.
,
Liang
,
J.
, and
Yang
,
J.
,
2023
, “
Stochastic Non-Autoregressive Transformer-Based Multi-Modal Pedestrian Trajectory Prediction for Intelligent Vehicles
,”
IEEE Trans. Intell. Transpor. Syst.
,
25
(
5
), pp.
1
14
.
14.
Chen
,
H.
,
2021
, “
Challenges and Corresponding Solutions of Generative Adversarial Networks (GANs): A Survey Study
,”
J. Phys.: Conf. Ser.
,
1827
(
1
), p.
012066
.
15.
Saxena
,
D.
, and
Cao
,
J.
,
2020
, “
Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions
,” CoRR, abs/2005.00065.
16.
Wang
,
T.
,
Li
,
G.
,
Hatledal
,
L. I.
,
Skulstad
,
R.
,
Æsøy
,
V.
, and
Zhang
,
H.
,
2022
, “
Incorporating Approximate Dynamics Into Data-Driven Calibrator: A Representative Model for Ship Maneuvering Prediction
,”
IEEE Trans. Ind. Inf.
,
18
(
3
), pp.
1781
1789
.
17.
Capobianco
,
S.
,
Millefiori
,
L. M.
,
Forti
,
N.
,
Braca
,
P.
, and
Willett
,
P.
,
2021
, “
Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural Networks
,”
IEEE Trans. Aerosp. Electron. Syst.
,
57
(
6
), pp.
4329
4346
.
18.
Nguyen
,
D.
, and
Fablet
,
R.
,
2021
, “Traisformer-A Generative Transformer for AIS Trajectory Prediction,” CoRR, abs/2109.03958.
19.
Liu
,
R. W.
,
Liang
,
M.
,
Nie
,
J.
,
Yuan
,
Y.
,
Xiong
,
Z.
,
Yu
,
H.
, and
Guizani
,
N.
,
2022
, “
STMGCN: Mobile Edge Computing-Empowered Vessel Trajectory Prediction Using Spatio-Temporal Multigraph Convolutional Network
,”
IEEE Trans. Ind. Inf.
,
18
(
11
), pp.
7977
7987
.
20.
Yuan
,
Y.
,
Weng
,
X.
,
Ou
,
Y.
, and
Kitani
,
K.
,
2021
, “
Agentformer: Agent-Aware Transformers for Socio-Temporal Multi-agent Forecasting
,”
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
,
Montreal, BC, Canada
,
Oct. 11–17
, IEEE Computer Society, pp.
9793
9803
.
21.
Bertasius
,
G.
,
Wang
,
H.
, and
Torresani
,
L.
,
2021
, “
Is Space-Time Attention All You Need for Video Understanding?
Proceedings of the 38th International Conference on Machine Learning
,
M.
Meila
and
T.
Zhang
, eds.,
PMLR
, vol. 139, pp.
813
824
.
22.
Han
,
P.
,
Zhu
,
M.
, and
Zhang
,
H.
,
2023
, “
Interaction-Aware Short-Term Marine Vessel Trajectory Prediction With Deep Generative Models
,”
IEEE Trans. Indu. Inf.
,
20
(
3
), pp.
1
9
.
23.
Zhu
,
M.
,
Tian
,
W.
,
Skulstad
,
R.
,
Zhang
,
H.
, and
Li
,
G.
,
2024
, “
Prediction-Enabled Path Planning for Multi-ship Encounters in Oslofjord
,”
Ocean Eng.
,
294
, p.
116747
.
24.
Bahdanau
,
D.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2015
, “
Neural Machine Translation by Jointly Learning to Align and Translate
,”
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, May 7–9, Conference Track Proceedings, Y. Bengio and Y. LeCun, eds
.
25.
Wei Gao
,
D.
, and
Yan
,
K.
,
2021
, “
A Novel MP-LSTM Method for Ship Trajectory Prediction Based on AIS Data
,”
Ocean Eng.
,
228
, p.
108956
.
26.
Alahi
,
A.
,
Goel
,
K.
,
Ramanathan
,
V.
,
Robicquet
,
A.
,
Fei-Fei
,
L.
, and
Savarese
,
S.
,
2016
, “
Social LSTM: Human Trajectory Prediction in Crowded Spaces
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
961
971
.
27.
Gupta
,
A.
,
Johnson
,
J.
,
Fei-Fei
,
L.
,
Savarese
,
S.
, and
Alahi
,
A.
,
2018
, “
Social GAN: Socially Acceptable Trajectories With Generative Adversarial Networks
,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Salt Lake City, UT
,
June 18–22
, IEEE Computer Society, pp.
2255
2264
.
28.
Ivanovic
,
B.
, and
Pavone
,
M.
,
2019
, “
The Trajectron: Probabilistic Multi-agent Trajectory Modeling With Dynamic Spatiotemporal Graphs
,”
2019 IEEE/CVF International Conference on Computer Vision (ICCV)
,
Long Beach, CA
,
June 15–20
, IEEE Computer Society, pp.
2375
2384
.
29.
Salzmann
,
T.
,
Ivanovic
,
B.
,
Chakravarty
,
P.
, and
Pavone
,
M.
,
2020
, “
Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data
”.
Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, Aug. 23–28, Proceedings, Part XVIII, Springer-Verlag
, pp.
683
700
.
30.
Kingma
,
D. P.
, and
Welling
,
M.
,
2022
,
Auto-Encoding Variational Bayes
.
arXiv preprint arXiv:1312.6114
.
31.
Pagnoni
,
A.
,
Liu
,
K.
, and
Li
,
S.
,
2018
,
Conditional Variational Autoencoder for Neural Machine Translation
.
arXiv preprint arXiv:1812.04405
.
You do not currently have access to this content.