The accuracy of two integration algorithms is studied for the common engineering condition of a von Mises, isotropic hardening model under plane stress. Errors in stress predictions for given total strain increments are expressed with contour plots of two parameters; an angle in the pi-plane and the difference between the exact and computed yield surface radii. The two methods are the tangent predictor-radial return approach and the elastic predictor-radial corrector algorithm originally developed by Mendelson. The accuracy of a combined tangent predictor-radial corrector algorithm is also investigated. For single-step constant-strain-rate increments the elastic predictor-radial corrector method is generally the most accurate, although errors in angle can be significant. The use of a simple subincrementation formula with any one of the three approaches yields results that would be acceptable for most engineering problems.

This content is only available via PDF.
You do not currently have access to this content.