To develop the prototype vibration pumping device for an artificial heart (Hashimoto et al., 1994, ASME J. Fluids Eng., 116, pp. 741–745), the flow patterns in the casing were analyzed experimentally and numerically from the viewpoint of biomechanical engineering. Considering not only the mechanical performance of the pump, but also the hemolysis, was very important to design the artificial heart. In the present study, the curvilinear coordinate transformation technique and the finite difference technique were used to numerically solve the unsteady, incompressible, and axisymmetric Navier-Stokes equations for the flow field in the various casing configurations of the vibration pumping device. The validity of numerical analysis was confirmed by comparison with the experimental data obtained by the flow visualization technique. Furthermore, the strong dependence of the hemolysis on the flow patterns in the casing was recognized. In particular, the relationship between the vorticity field in the casing and the hemolysis was elucidated. The results obtained here would provide the useful suggestions for future research and the basic design concept of vibration pumping device for the left ventricular assist device.

1.
Hashimoto
,
H.
,
Hiyama
,
H.
, and
Sato
,
R.
,
1994
, “
Development of Prototype Pump Using a Vibrating Pipe With a Valve
,”
ASME J. Fluids Eng.
,
116
, pp.
741
745
.
2.
Kobayashi
,
S.
,
Nitta
,
S.
,
Yambe
,
T.
,
Naganuma
,
S.
,
Tanaka
,
M.
,
Kasai
,
T.
, and
Hashimoto
,
H.
,
1994
, “
Carotid Arterial Impedance During Oscillated Blood Flow
,”
Artificial Organs
,
18
, pp.
627
632
.
3.
Aoki
,
M.
,
Hashimoto
,
H.
,
Nitta
,
S.
,
Sonobe
,
T.
, and
Hiyama
,
H.
,
1991
, “
Pump Performance and Hemolytic Property of a Vibration Pump as a Ventricular Assist Device
” (in Japanese),
Trans. Jpn. Soc. Mech. Eng.
,
B57
, pp.
3123
3127
.
4.
Sonobe
,
T.
,
Nitta
,
S.
,
Katahira
,
Y.
,
Yambe
,
T.
,
Naganuma
,
S.
,
Akiho
,
H.
,
Hayashi
,
H.
,
Miura
,
M.
,
Satoh
,
N.
,
Mohri
,
H.
,
Hiyama
,
H.
,
Hashimoto
,
H.
, and
Tanaka
,
M.
,
1990
, “
The Development and Evaluation of Vibrating Electro-Magnetic Pump for the Artificial Heart
” (in Japanese),
Japanese J. Artificial Organs
,
19
, pp.
113
116
.
5.
Sonobe
,
T.
,
Nitta
,
S.
,
Katahira
,
Y.
,
Yambe
,
T.
,
Naganuma
,
S.
,
Akiho
,
H.
,
Hayashi
,
H.
,
Kakinuma
,
Y.
,
Tanaka
,
M.
,
Miura
,
M.
,
Satoh
,
N.
,
Mohri
,
H.
,
Hiyama
,
H.
,
Aoki
,
M.
,
Hashimoto
,
H.
,
Endoh
,
E.
, and
Hoshino
,
A.
,
1991
, “
An Evaluation of Hemolysis in the Vibrating Electro-Magnetic Pump
” (in Japanese),
Japanese J. Medical Electronics and Biological Engineering
,
29
, p.
304
304
.
6.
Hashimoto, H., and Nitta, S., 1992, private communication.
7.
Unger, F., 1984, Assisted Circulation 2, Springer-Verlag.
8.
Fung, Y. C., 1990, Biomechanics, Springer-Verlag.
9.
Thompson
,
J. F.
,
Thames
,
F. C.
, and
Mastin
,
C. W.
,
1974
,
Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies
,
J. Comput. Phys.
,
15
, pp.
299
319
.
10.
Kawano
,
S.
,
1998
, “
Flow Patterns around a Spherically Eccentric Encapsulated Liquid Drop at Intermediate Reynolds Numbers
,”
Computational Fluid Dynamics J.
,
7
, pp.
205
214
.
11.
Kobayashi
,
S.
,
Nitta
,
S.
,
Yambe
,
T.
,
Sonobe
,
T.
,
Naganuma
,
S.
, and
Hashimoto
,
H.
,
1997
, “
Hemolysis Test of Disposable Type Vibrating Flow Pump
,”
Artificial Organs
,
21
, pp.
691
693
.
You do not currently have access to this content.