This paper deals with the computation of shakedown loads of engineering structures subjected to varying loads. In particular, we focus on thermal loading and the resulting heat conduction problem in combination with shakedown analysis. The analysis is based on the lower bound shakedown theorem by Melan. The calculation is carried out by use of an interior-point algorithm. Emphasis is placed on the presentation of theoretical derivations, whereas numerical aspects are out of scope. The methodology is illustrated by application to a simplified model of a tube sheet in heat exchangers.
Issue Section:
Design and Analysis
References
1.
Weichert
, D.
, and Maier
, G.
, 2000, Inelastic Analysis of Structures Under Variable Repeated Loads
, Kluwer Academic Publishers
, Dordrecht
.2.
Maier
, G.
, Pastor
, I
, Ponter
, A.
, and Weichert
, D.
, 2003, “Direct Methods of Limit and Shakedown Analysis
,” Comprehensive Structural Integrity—Fracture of Materials from Nano to Macro
, R.
de Borst
and H.
Mang
, eds., Elsevier-Pergamon
, Amsterdam
, Vol. 3: Numerical and Computational Methods, pp. 637
–684
.3.
Weichert
, D.
, and Ponter
, A.
, 2009, Limit States of Materials and Structures
, Springer
, Wien/New York
.4.
Melan
, E.
, 1938, “Zur Plastizität des räumlichen Kon-tinuums
,” Ing. Arch.
, 9
, pp. 116
–126
.5.
König
, J.
, 1987, Shakedown of Elastic-Plastic Structures
, Elsevier
, Amsterdam
.6.
Gokhfeld
, D.
, and Cherniavsky
, O.
, 1980, Limit Analysis of Structures at Thermal Cycling
, Sijthoff and Noordhoff
, Alphen aan den Rijn
.7.
Potra
, K.
, and Wright
, S.
, 2000, “Interior-Point Methods
,” J. Comput. Appl. Math.
, 124
, pp. 281
–302
.8.
Forsgren
, A.
, Gill
, P.
, and Wright
, M.
, 2002, “Interior Methods for Nonlinear Optimization
,” SIAM Review
, 44
(4
), pp. 525
–597
.9.
Wright
, M.
, 2004, “The Interior-Point Revolution in Optimization: History, Recent Developments and Lasting Consequences
,” Bull. Am. Math. Soc.
, 42
(1
), pp. 39
–56
.10.
Andersen
, E.
, Jensen
, B.
, Jensen
, J.
, Sandvik
, R.
, and Worsoe
, U.
, 2009, “MOSEK Version 6
,” Technical Report TR–2009–3, MOSEK.11.
Trillat
, M.
, and Pastor
, J.
, 2005, “Limit Analysis and Gurson’s Model
,” Eur. J. Mech. A/Solids
, 24
, pp. 800
–819
.12.
Bisbos
, C.
, Makrodimopoulos
, A.
, and Pardalos
, P.
, 2005, “Second-Order Cone Programming Approaches to Static Shakedown Analysis in Steel Plasticity
,” Optim. Methods Software
, 20
(1
), pp. 25
–52
.13.
Makrodimopoulos
, A.
, and Martin
, C.
, 2006, “Lower Bound Limit Analysis of Cohesive-Frictional Materials Using Second-Order Cone Programming
,” Int. J. Numer. Methods Eng.
, 66
(4
), pp. 604
–634
.14.
Krabbenhøft
, K.
, Lyamin
, A.
, and Sloan
, S.
, 2007, “Formulation and Solution of Some Plasticity Problems as Conic Programs
,” Int. J. Solids Struct.
, 44
, pp. 1533
–1549
.15.
Casciaro
, R.
, and Garcea
, G.
, 2002, “An Iterative Method for Shakedown Analysis
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 5761
–5792
.16.
Zhang
, X.
, Liu
, Y
, Yanan
, Z.
, and Cen
, Z.
, 2002, “Lower Bound Limit Analysis by the Symmetric Galerkin Boundary Element Method and the Complex Method
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 1967
–1982
.17.
Krabbenhoft
, K.
, and Damkilde
, L.
, 2003, “A General Nonlinear Optimization Algorithm for Lower Bound Limit Analysis
,” Int. J. Numer. Methods Eng.
, 56
, pp. 165
–184
.18.
Krabbenhøft
, K.
, Lyamin
, A.
, Sloan
, S.
, and Wriggers
, P.
, 2007, “An Interior-Point Algorithm for Elastoplasticity
,” Int. J. Numer. Methods Eng.
, 69
, pp. 592
–626
.19.
Vu
, D.
, and Staat
, M
, 2007, “Analysis of Pressure Equipment by Application of the Primal-Dual Theory of Shakedown
,” Commun. Numer. Methods Eng.
, 23
(3
), pp. 213
–225
.20.
Akoa
, K
, Hachemi
, A.
, An
, L.
, Mouhtamid
, S.
, and Tao
, P.
, 2007, “Application of Lower Bound Direct Method to Engineering Structures
,” J. Global Optim.
, 37
(4
), pp. 609
–630
.21.
Pastor
, K
, Loute
, E.
, Pastor
, J.
, and Trillat
, M
, 2009, “Mixed Method and Convex Optimization for Limit Analysis of Homogeneous Gurson Materials: A Kinematic Approach
,” Eur. J. Mech. A/Solids
, 28
, pp. 25
–35
.22.
Simon
, J.-W.
, and Weichert
, D.
, 2010, “An Improved Interior-Point Algorithm for Large-Scale Shakedown Analysis
,” PAMM—Proc. Appl. Math. Mech.
, 10
, pp. 223
–224
.23.
Simon
, J.-W.
, and Weichert
, D.
, 2010, “Interior-Point Method for the Computation of Shakedown Loads for Engineering Systems
,” ASME Conference Proceedings ESDA2010
, Vol. 4
, pp. 253
–262
.24.
Hachemi
, A.
, An
, L.
, Mouhtamid
, S.
, and Tao
, P.
, 2004, “Large-Scale Nonlinear Programming and Lower Bound Direct Method in Engineering Applications
,” Modelling, Computation and Optimization in Information Systems and Management Sciences
, L.
An
and P.
Tao
, eds., Hermes Science Publishing
, London
, pp. 299
–310
.25.
Wächter
, A.
, and Biegler
, L.
, 2005, “Line-Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence
,” SIAM J Optim
, 16
(1
), pp. 1
–31
.26.
Wächter
, A.
, and Biegler
, L.
, 2006, “On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,” Math Program
, 106
(1
), pp. 25
–57
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.