A method of calculating soil cover requirements for horizontally bent buried pipelines is described. In sequence, the results of a comprehensive three-dimensional finite element analysis are used to develop regression models for two dependent variables: maximum allowed temperature change and minimum overburden height. Other variables considered include the pipe diameter and thickness, the radius and angle of the bend, the internal pressure, the fluid specific weight, and the material used. Relationships among the different variables are determined. Finally, the results are checked with respect to several buckling modes to consider elastic instability conditions.
Issue Section:
Pipeline Systems
Topics:
Pipelines,
Pipes,
Soil,
Buckling,
Finite element methods,
Finite element analysis,
Temperature,
Pressure,
Stress
References
1.
ASME B31.4
, 1992, Liquid Transportation Systems for Hydrocarbons, Liquid Petroleum Gas, Anhydrous Ammonia, and Alcohols
, ASME
, New York
.2.
SAES-L-051
, 1998, “Construction Requirements for Cross-Country Pipelines
,” Saudi ARAMCO Engineering Standard
, Saudi Arabian Oil Company (Saudi ARAMCO)
, Saudi Arabia
.3.
Karman
, Th. von
, 1911, “Über die Formänderung Dünnwandiger Rohre, Insbesondere Federnder Ausgleichrohre
,” Z. Ver. Dtsch. Ing.
, 55
(45
), pp. 1889
–1895
.4.
Vigness
, I.
, 1943, “Elastic Properties of Curved Tubes
,” Trans. ASME
, pp. 105
–120
.5.
Pardue
, T. E.
, and Vigness
, I.
, 1951, “Properties of Thin Walled Curved Tubes of Short Bend Radius
,” Trans. ASME
, 73
, pp. 77
–84
.6.
Kafka
, P. G.
, and Dunn
, M. B.
, 1956, “Stiffness of Curved Circular Tubes With Internal Pressure
,” Trans. ASME
, 78
, pp. 247
–254
.7.
Rodabaugh
, E. C.
, and George
, H. H.
, 1957, “Effect of Internal Pressure on Flexibility and Stress Intensification Factors of Curved Pipe or Welding Elbow
,” Trans. ASME
, 79
, pp. 939
–948
.8.
Findlay
, G. E.
, and Spence
, J.
, 1979, “Stress Analysis of Smooth Curved Tubes With Flanged End Constraints
,” Int. J. Pressure Vessels Piping
, 7
, pp. 83
–103
.9.
Thomson
, G.
, and Spence
, J.
, 1983, “Maximum Stresses and Flexibility Factors of Smooth Pipe Bends With Tangent Pipe Terminations Under In-Plane Bending
,” ASME J. Pressure Vessel Technol.
, 105
, pp. 329
–336
.10.
Whatham
, J. F.
, 1986, “Pipe Bend Analysis by Thin Shell Theory
,” ASME J. Appl. Mech.
, 53
, pp. 173
–180
.11.
Gresnight
, A. M.
, and van Foeken
, R. J.
, 1995, “Strength and Deformation Capacity of Bends in Pipelines
,” Int. J. Offshore Polar Eng.
, 5
(4
), pp. 294
–307
.12.
Natarajan
, R.
, and Blomfield
, J. A.
, 1975, “Stress Analysis of Curved Pipes With End Constraints
,” Comput. Struct.
, 5
, pp. 187
–196
.13.
Ohtsubo
, M.
, and Watanabe
, O.
, 1977, “Flexibility and Stress Factors of Pipe Bends—An Analysis by the Finite Ring Method
,” ASME J. Pressure Vessel Technol.
, 99
, pp. 281
–290
.14.
Weiß
, E.
, Lietzmann
, A.
, and Rudolph
, J.
, 1996, “Linear and Nonlinear Finite-Element Analyses of Pipe Bends
,” Int. J. Pressure Vessels Piping
, 67
(2
), pp. 211
–217
.15.
Hibbett
, H. D.
, 1974, “Special Structural Elements for Piping Analysis
,” ASME Special Publication, Pressure Vessels and Piping: Analysis and Computers
, S.
Tuba
, R. A.
Selby
, and W. B.
Wright
, eds., ASME
, New York
, pp. 1
–10
.16.
Bathe
, K. J.
, and Almeida
, C. A.
, 1982, “A Simple and Effective Pipe Elbow Element-Linear Analysis
,” ASME J. Appl. Mech.
, 47
, pp. 93
–100
.17.
Mackenzie
, D.
, and Boyle
, J. T.
, 1992, “A Simple Pipe Bend Element for Piping Flexibility Analysis
,” Int. J. Pressure Vessels Piping
, 51
(1
), pp. 85
–106
.18.
De Melo
, F. J. M. Q.
, and De Castro
, P. M. S. T.
, 1992, “A Reduced Integration Mindlin Beam Element for Linear Elastic Stress Analysis of Curved Pipes Under Generalized In-Plane Loading
,” Comput. Struct.
, 43
(4
), pp. 787
–794
.19.
Yin
, J. H.
, Paulin
, M. J.
, Clark
, J. I.
, and Poorooshasb
, F.
, 1993, “Preliminary Finite Element Analysis of Lateral Pipeline/Soil Interaction and Comparison to Centrifuge Model Test Results
,” Proceedings of the 12th International Conference on Offshore Mechanics and Arctic Engineering, Part 5 (of 6), ASME
, New York
, pp. 143
–155
.20.
Altaee
, A.
, and Boivin
, R.
, 1995, “Laterally Displaced Pipelines: Finite Element Analysis
,” Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering, Part 5 (of 6), ASME
, New York
, pp. 209
–216
.21.
Altaee
, A.
, Fellenius
, B. H.
, and Salem
, H.
, 1996, “Finite Element Modeling of Lateral Pipeline-Soil Interaction
,” Proceedings of the 15th International Conference on Offshore Mechanics and Arctic Engineering, Part 5 (of 6), ASME
, New York
, pp. 333
–341
.22.
Winkler
, E.
, 1867, Die Lehre von der Elasticitaet und Festigkeit, H. Dominicus, Prague, Czechoslovakia, pp. 182–184.23.
Hetenyi
, M.
, 1964, Beams on Elastic Foundation
, University of Michigan Press
, Ann Arbor
.24.
Vesić
, A. S.
, 1971, “Breakout Resistance of Objects Embedded in Ocean Bottom
,” J. Soil Mech. Found. Div.
, 94
(SM9
), pp. 1183
–1205
.25.
Audibert
, J. M. E.
, and Nyman
, K. J.
, 1977, “Soil Restraint Against Horizontal Motion of Pipe
,” J. Geotech. Eng.
, 103
(GT10
), pp. 1119
–1142
.26.
Peng
, L. C.
, 1978, Stress Analysis Method for Underground Pipe Lines
, Part 1 and 2, Pipeline Industry
, Houston, TX
.27.
Nyman
, K. J.
, 1984, “Soil Response Against Oblique Motion of Pipes
,” J. Transp. Eng.
, 110
(2
), pp. 190
–202
.28.
Hsu
, T. W.
, 1996, “Soil Restraint Against Oblique Motion of Pipelines in Sand
,” Can. Geotech. J.
, 33
(1
), pp. 180
–188
.29.
Goodling
, E. C.
, Jr., 1997, “Quantification of Nonlinear Restraint on the Analysis of Restrained Underground Piping
,” Proceedings of the 1997 ASME Pressure Vessels and Piping Conference, Pressure Vessels and Piping Division
, ASME
, New York
, PVP, Vol. 356
, pp. 107
–116
.30.
Ng
, P. C. F.
, Pyrah
, I. C.
, and Anderson
, W. F.
, 1997, “Prediction of Soil Restraint to a Buried Pipeline Using Interface Elements
,” Proceedings of the Sixth International Symposium, NUMOG VI
, pp. 469
–487
.31.
Trautmann
, C. H.
, O’Rourke
, T. D.
, and Kulhawy
, F. H.
, 1985, “Uplift Force-Displacement Response of Buried Pipe
,” J. Geotech. Eng.
, 111
(9
), pp. 1061
–1075
.32.
Trautmann
, C. H.
, and O’Rourke
, T. D.
, 1985, “Lateral Force-Displacement Response of Buried Pipe
,” J. Geotech. Eng.
, 111
(9
), pp. 1077
–1092
.33.
Ovesen
, N. K.
, 1964, Anchor Slab, Calculation Methods and Model Tests
, Danish Geotechnical Institute
, Copenhagen, Denmark
, Vol. 16
.34.
Row
, R. K.
, and Davis
, E. H.
, 1982, “The Behavior of Anchor Plates in Sand
,” Geotechnique
, 32
(1
), pp. 25
–41
.35.
Hsu
, T. W.
, 1993, “Rate Effect on Lateral Soil Restraint of Pipelines
,” Soils Found.
, 33
(4
), pp. 159
–169
.36.
Dickin
, E. A.
, 1994, “Uplift Resistance of Buried Pipelines in Sand
,” Soils Found.
, 34
(2
), pp. 41
–48
.37.
Poorooshasb
, F.
, Paulin
, M. J.
, Rizkalla
, M.
, and Clark
, J. I.
, 1994, Centrifuge Modeling of Laterally Loaded Pipelines
, TRB, National Research Council
, Washington, D.C.
, pp. 33
–40
.38.
SMAP-3D
, 1999, smap-3d, Structure Medium Analysis Program, User’s Manual, version 4.0
, Comtech Research
, Clifton, VA
.39.
FEMAP, Enterprise Software Products, Inc.
, 1996, FEMAP User’s Manual, version 4.5 for Windows.40.
FEMAP, Enterprise Software Products, Inc.
, 1996, “Introduction to FEA Using FEMAP.
”41.
Marston
, A.
, and Anderson
, A. O.
, 1913, The Theory of Loads on Pipes in Ditches and Tests on Cement and Clay Drain Tile and Sewer Pipe (Bulletin 31, Engineering Experiment Station)
, Iowa State College
, Ames, IA
.42.
Abduljauwad
, S. N.
, Al-Ghamedy
, H. N.
, Al-Shayea
, N. A.
, and Asi
, I. M.
, 1999, “Behavior, Analysis and Design of Buried Pipelines
,” Saudi Aramco, Dhahran, First Progress Report.43.
ASME B31.1
, 1992, “Appendix VII—Nonmandatory Procedures for the Design of Restrained Underground Piping
,” Power Piping
, ASME
, New York
.44.
CGL (Committee on Gas and Liquid Fuel Lines)
, 1984, Guidelines for the Seismic Design of Oil and Gas Pipelines Systems
, American Society of Civil Engineers
, New York, NY
.45.
Abduljauwad
, S. N.
, Al-Ghamedy
, H. N.
, Al-Shayea
, N. A.
, and Asi
, I. M.
, 1999, “Behavior, Analysis and Design of Buried Pipelines
,” Saudi Aramco, Dhahran, Second Progress Report.46.
Musser
, S. C.
, 1989, “CANDE-89 Culvert Analysis and Design Computer Program User’s Manual
,” Federal Highway Administration, VA, Report No. FHWA-RD-89-169.47.
Siddiqui
, J. A.
, 2000, “The Interaction Between Soil and Buried Bent Pipelines
,” M.S. thesis, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.48.
Abduljauwad
, S. N.
, Al-Ghamedy
, H. N.
, Al-Shayea
, N. A.
, Asi
, I. M.
, Siddiqui
, J. A.
, and Bashir
, R.
, 2001, “Behavior, Analysis and Design of Buried Pipelines
,” Saudi Aramco, Dhahran, Final Report.49.
Timoshenko
, S. P.
, and Gere
, J. M.
, 1963, Theory of Elastic Stability
, 2nd ed., McGraw-Hill
, New York
.50.
Antaki
, G.
, 1997, A Review of Methods for the Analysis of Buried Pressure Piping
, Welding Research Council
, New York, NY
, Bulletin No 425.51.
Ellinas
, C. P.
, 1984, Buckling of Offshore Structures, A State-of-the-Art Review of Buckling of Offshore Structures
, Granada Publishing Ltd.
, London, UK
.52.
Watashi
, K.
, and Iwata
, K.
, 1995, “Thermal Buckling and Progressive Ovalization of Pipes: Experiences at the TTS Sodium Test Facility and Their Analysis
,” Nucl. Eng. Des.
, 153
, pp. 319
–330
.53.
Farshad
, M.
, 1994, Stability of Structure
, Elsevier, Science Publishers
, Amsterdam
.54.
AWWA C150
, 1996, “American National Standard for Thickness Design of Ductile-Iron Pipe
,” American Water Works Association, Denver, CO.55.
Moore
, I. D.
, and Booker
, J. R.
, 1985, “Simplified Theory for the Behaviour of Buried Flexible Cylinders Under the Influence of Uniform Hoop Compression
,” Int. J. Solids Struct.
, 21
(9
), pp. 929
–941
.56.
Moore
, I. D.
, and Booker
, J. R.
, 1985, “Behaviour of Buried Flexible Cylinders Under the Influence of Nonuniform Hoop Compression
,” Int. J. Solids Struct.
, 21
(9
), pp. 943
–956
.57.
Murray
, D. W.
, 1997, “Local Buckling, Strain Localization, Wrinkling and Postbuckling Response of Line Pipe
,” Eng. Struct.
, 19
(5
), pp. 360
–371
.58.
Chiou
, Y.-J.
, and Chi
, S.-Y.
, 1996, “A Study on Buckling of Offshore Pipelines
,” ASME J. Offshore Mech. Arct. Eng.
, 118
, pp. 62
–70
.59.
Hobbs
, R. E.
, 1981, “Pipeline Buckling Caused by Axial Loads
,” J. Constr. Steel Res.
, 1
(2
), pp. 2
–10
.60.
Hobbs
, R. E.
, 1984, “In-Service Buckling of Heated Pipelines
,” J. Transp. Eng.
, 110
(2
), pp. 175
–189
.61.
Taylor
, N.
, and Gan
, A. B.
, 1984, “Regarding the Buckling of Pipelines Subject to Axial Loading
,” J. Constr. Steel Res.
, 4
, pp. 45
–50
.62.
Taylor
, N.
, and Gan
, A. B.
, 1986, “Refined Modelling for the Lateral Buckling of Submarine Pipelines
,” J. Constr. Steel Res.
, 6
, pp. 143
–162
.63.
Taylor
, N.
, and Gan
, A. B.
, 1987, “Refined Modelling for the Vertical Buckling of Submarine Pipelines
,” J. Constr. Steel Res.
, 7
, pp. 55
–74
.64.
Reddy
, B.
, 1979, “An Experimental Study of the Plastic Buckling of Circular Cylinders in Pure Bending
,” Int. J. Solids Struct.
, 15
, pp. 669
–683
.65.
Stephens
, D. R.
, Olson
, R.J.
, and Rosenfeld
, M.J.
1991, “Pipeline Monitoring—Limit State Criteria
,” Pipeline Research Council International, NG-18 Report No. 188.66.
Yun
, H.
, and Kyriakides
, S.
, 1985, “Model for Beam-Mode Buckling of Buried Pipelines
,” J. Eng. Mech.
, 111
(2
), pp. 235
–253
.67.
Yun
, H.
, and Kyriakides
, S.
, 1990, “On the Beam and Shell Modes of Buckling of Buried Pipelines
,” Int. J. Soil Dyn. Earthquake Eng.
, 9
(4
), pp. 179
–193
.68.
Deutsch
, W. L.
, Jr., and Weston
, R. F.
, 1996, “Determination of the Required Thickness of Soil Cover Above Buried Landfill Gas Transfer Pipes to Prevent Thermal Buckling: An Engineered Approach
,” Proceedings of the 12th International Conference on Solid Waste Technology and Management
, Philadelphia, PA
.69.
Shaw
, P. K.
, and Bomba
, J. G.
, 1994, “Finite-Element Analysis of Pipeline Upheaval Buckling
,” Pipeline Technology
, ASME
, V
, pp. 291
–296
.70.
Chiou
, Y.-J.
, and Chi
, S.-Y.
, 1993, “Beam Mode Buckling of Buried Pipelines in a Layered Medium
,” Proceedings of the Third International Offshore and Polar Engineering Conference, Singapore, June 6–11, pp. 10
–17
.71.
Zhou
, Z.
, and Murray
, D. W.
, 1995, “Analysis of Postbuckling Behavior of Line Pipe Subjected to Combined Loads
,” Int. J. Solids Struct.
, 32
(20
), pp. 3015
–3036
.72.
API Recommended Practice 1102
, 1993, Steel Pipelines Crossing Railroads and Highways
, American Petroleum Institute
, Washington, D.C
.73.
Jullien
, J. F.
, 1991, Buckling of Shell Structures on Land, in the Sea and in the Air
, Elsevier
, London
.74.
Abduljauwad
, S. N.
, Al-Ghamedy
, H. N.
, Al-Shayea
, N. A.
, and Asi
, I. M.
, 2001, “Behavior, Analysis and Design of Buried Pipelines
,” Saudi Aramco, Dhahran, Fifth Progress Report.75.
Abduljauwad
, S. N.
, Al-Ghamedy
, H. N.
, Al-Shayea
, N. A.
, Asi
, I. M.
, Siddiqui
, J. A.
, and Bashir
, R.
, 2001, Analysis and Design of Buried Pipelines, User’s Manual, ADBP Program
, Saudi Aramco
, Dhahran
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.