In high temperature design, the accumulation of creep strain during the primary stage has to be considered since most of the allowable design strain occurs in this stage. In this work, assuming that the creep rate in the transient regime can be given as a fraction of the steady state creep rate and function of the internal stress, a mechanism based model for primary creep has been derived. Taking into account that the apparent activation energy varies with the internal stress, which evolves with creep strain, an exponential form of the creep rate versus creep strain has been obtained. The proposed model for primary creep requires the identification of two material parameters only which are shown to be function of the applied stress and independent of temperature. The proposed model has been validated for high chromium steel P91.

References

1.
Andrade
,
E. N. d. C.
,
1910
, “
On the Viscous Flow in Metals and Allied Phenomena
,”
Proc. R. Soc. London, Ser. A
,
84
,
pp.
1
12
.10.1098/rspa.1910.0050
2.
Evans
,
R. W.
, and
Wilshire
,
B.
,
1985
,
Creep of Metals and Alloys
,
The Institute of Metals
,
London
.
3.
Ahlquist
,
C. N.
,
Gasca-Neri
,
R.
, and
Nix
,
W. D.
,
1970
, “
A Phenomenological Theory of Steady State Creep Based on Average Internal and Effective Stresses
,”
Acta Metall.
,
18
,
pp.
663
671
.10.1016/0001-6160(70)90096-9
4.
Gasca-Neri
,
R.
,
Ahlquist
,
C. N.
, and
Nix
,
W. D.
,
1970
, “
A Phenomenological Theory of Transient Creep
,”
Acta Metall.
,
18
,
pp.
655
661
.10.1016/0001-6160(70)90095-7
5.
Ahlquist
,
C. N.
, and
Nix
,
W. D.
,
1969
, “
A technique for measuring mean internal stress during high temperature creep
,”
Scr. Metall.
,
3
,
pp.
679
682
.10.1016/0036-9748(69)90076-3
6.
Taleff
,
E. M.
,
Green
,
W. P.
,
Kulas
,
M.-A.
,
McNelley
,
T. R.
, and
Krajewski
,
P. E.
,
2005
, “
Analysis, Representation, and Prediction of Creep Transients in Class I Alloy
,”
Mater. Sci. Eng. A
,
410–411
,
pp.
32
37
.10.1016/j.msea.2005.08.085
7.
Orowan
,
E.
,
1940
, “
Problems of Plastic Gliding
,”
Proc. Phys. Soc.
,
52
,
pp.
8
22
.10.1088/0959-5309/52/1/303
8.
Martin
,
J. L.
,
Lo Piccolo
,
B.
,
Kruml
,
T.
, and
Bonneville
,
J.
,
2002
, “
Characterization of Thermally Activated Dislocation Mechanisms Using Transient Tests
,”
Mater. Sci. Eng. A
,
322
,
pp.
118
125
.10.1016/S0921-5093(01)01124-8
9.
Davies
,
R. G.
,
1961
, “
On the Activation Energy of High Temperature Creep
,”
Acta Metall.
,
9
,
pp.
1035
1036
.10.1016/0001-6160(61)90248-6
10.
Sherby
,
O. D.
,
Lytton
,
J. L.
, and
Dorn
,
J. E.
,
1957
, “
Activation Energy for Creep of High-Purity Aluminum
,”
Acta Metall.
,
5
,
pp.
219
227
.10.1016/0001-6160(57)90169-4
11.
Feltham
,
P.
,
1956
, “
On the Mechanism of High-Temperature Creep in Metals with Special Reference to Polycrystalline Lead
,”
Proc. Phys. Soc. B
,
69
,
pp.
1173
1188
.10.1088/0370-1301/69/12/301
12.
Feltham
,
P.
, and
Meakin
,
J. D.
,
1959
, “
Creep in Face-Centered Cubic Metals with Special Reference to Copper
,”
Acta Metall.
,
5
,
pp.
219
227
.10.1016/0001-6160(59)90131-2
13.
Ule
,
B.
, and
Nagode
,
A.
,
2007
, “
The Improved Power-Law, Stress-Dependent, Energy-Barrier Model of 9Cr-1Mo-0.2V Steel Using Short-Term Creep Data
,”
Scr. Mater.
,
57
,
pp.
405
408
.10.1016/j.scriptamat.2007.05.001
14.
Dobeš
,
F.
,
1983
, “
Contribution to the Determination of Activation Energy of Creep
,”
Scr. Metall.
,
17
,
pp.
597
600
.10.1016/0036-9748(83)90384-8
15.
Jeong
,
C. Y.
,
Nam
,
S. W.
, and
Ginsztler
,
J.
,
1999
, “
Activation Processes of Stress Relaxation During Hold Time in 1 cr-Mo-V Steel
,”
Mater. Sci. Eng. A
,
264
,
pp.
188
193
.10.1016/S0921-5093(98)01086-7
16.
Taylor
,
G. I.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals
,”
Proc. R. Soc. London, Ser. A
,
145
,
pp.
362
387
.10.1098/rspa.1934.0106
17.
Estrin
,
Y.
, and
Mecking
,
H.
,
1984
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
,
32
,
pp.
57
70
.10.1016/0001-6160(84)90202-5
18.
Cipolla
,
L.
,
Lombardi
,
P.
,
Folgarait
,
P.
,
Di Gianfrancesco
,
A.
,
Bonora
,
N.
,
Esposito
,
L.
,
Cumino
,
G.
, and
Caminada
,
S.
,
2008
,
Proceedings of the High Strength Steel Conference
.
19.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
New York
.
20.
Raj
,
S. V.
, and
Langdon
,
T. G.
,
1989
, “
Creep Behavior of Copper at Intermediate Temperatures - I Mechanical Characteristics
,”
Acta Metall.
,
37
,
pp.
843
852
.10.1016/0001-6160(89)90011-4
21.
Sartelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
John Wiley & Sons Ltd.
,
Chichester
.
You do not currently have access to this content.