Abstract

This technical brief is an experimental study, which used a water tunnel to investigate the fluidelastic instability of tube bundles with asymmetric stiffness. The natural frequency ratios (streamwise/transverse) of the tubes are 50%, 60%, 70%, and 80%, respectively. Flexible tubes are set as the following two patterns: a single flexible tube and a cluster of seven flexible tubes. The vibration data of tube bundles are collected and analyzed by a self-designed Visual Analysis System. The results show that the fluidelastic instability only occurs in the transverse direction. In the streamwise direction, the coupling effect of vibrations in both directions of the tube causes the increase of vibration amplitude, no matter in the single-flexible-tube case or the seven-flexible-tube cluster. Furthermore, reducing the natural frequency of the streamwise direction will not change the transverse critical velocity but leads to an amplitude increase caused by vortex-induced vibration. Compared to the single flexible tube, vortex-induced vibration is more likely to occur in the tube cluster with larger amplitudes.

References

1.
Weaver
,
D. S.
, and
Fitzpatrick
,
J. A.
,
1988
, “
A Review of Cross-Flow Induced Vibrations in Heat Exchanger Tube Arrays
,”
J. Fluids Struct.
,
2
(
1
), pp.
73
93
.10.1016/S0889-9746(88)90137-5
2.
Paidoussis
,
M.
,
1983
, “
A Review of Flow-Induced Vibrations in Reactors and Reactor Components
,”
Nucl. Eng. Des.
,
74
(
1
), pp.
31
60
.10.1016/0029-5493(83)90138-3
3.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1991
, “
Fluidelastic Instability of Heat Exchanger Tube Bundles: Review and Design Recommendations
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
242
256
.10.1115/1.2928752
4.
Price
,
S.
,
1995
, “
A Review of Theoretical Models for Fluidelastic Instability of Cylinder Arrays in Cross-Flow
,”
J. Fluids Struct.
,
9
(
5
), pp.
463
518
.10.1006/jfls.1995.1028
5.
Yetisir
,
M.
, and
Weaver
,
D. S.
,
1993
, “
An Unsteady Theory for Fluidelastic Instability in an Array of Flexible Tubes in Cross-Flow. Part I: Theory
,”
J. Fluids Struct.
,
7
(
7
), pp.
751
766
.10.1006/jfls.1993.1044
6.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview—Part 1: Flow, Damping, Fluidelastic Instability
,”
J. Fluids Struct.
,
18
(
5
), pp.
469
483
.10.1016/j.jfluidstructs.2003.08.007
7.
Janzen
,
V. P.
,
Hagberg
,
E. G.
,
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2005
, “
Fluidelastic Instability and Work-Rate Measurements of Steam-Generator U-Tubes in Air–Water Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
127
(
1
), pp.
84
91
.10.1115/1.1849229
8.
Hassan
,
M.
, and
Weaver
,
D. S.
,
2015
, “
The Effect of Flat Bar Supports on Streamwise Fluidelastic Instability in Heat Exchanger Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
137
(
6)
, p. 061302.10.1115/1.4029973
9.
Weaver
,
D. S.
, and
Schneider
,
W.
,
1983
, “
The Effect of Flat Bar Supports on the Crossflow Induced Response of Heat Exchanger U-Tubes
,”
ASME J. Pressure Vessel Technol.
,
105
(
4
), pp.
775
781
.10.1115/1.3227481
10.
Mohany
,
A.
,
Janzen
,
V. P.
,
Feenstra
,
P.
, and
King
,
S.
,
2012
, “
Experimental and Numerical Characterization of Flow-Induced Vibration of Multispan U-Tubes
,”
ASME J. Pressure Vessel Technol.
,
134
(
1
), p.
011301
.10.1115/1.4004796
11.
U.S. Nuclear Regulatory Commission,
2012
, “San Onefre Nuclear Generating Station Unit 2 Return to Service Report,” Southern California Edison, Web on NRC, U.S. Nuclear Regulatory Commission, Rockville, MD, pp.
1
54
.
12.
Hirota
,
K.
,
Morita
,
H.
,
Hirai
,
J.
,
Iwasaki
,
A.
,
Utsumi
,
S.
,
Shimamura
,
K.
, and
Kawakami
,
R.
, “
Investigation on In-Flow Fluidelastic Instability of an Array of Tubes
,”
ASME
Paper No. PVP2013-97163.10.1115/PVP2013-97163
13.
Mureithi
,
N. W.
,
Zhang
,
C.
,
Ruël
,
M.
, and
Pettigrew
,
M. J.
,
2005
, “
Fluidelastic Instability Tests on an Array of Tubes Preferentially Flexible in the Flow Direction
,”
J. Fluids Struct.
,
21
(
1
), pp.
75
87
.10.1016/j.jfluidstructs.2005.03.010
14.
Violette
,
R.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2006
, “
Fluidelastic Instability of an Array of Tubes Preferentially Flexible in the Flow Direction Subjected to Two-Phase Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
128
(
1
), pp.
148
159
.10.1115/1.2138064
15.
Khalvatti
,
A.
,
Mureithi
,
N. W.
, and
Pettigrew
,
M. J.
,
2010
, “
Effect of Preferential Flexibility Direction on Fluidelastic Instability of a Rotated Triangular Tube Bundle
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041309
.10.1115/1.4002181
16.
Hassan
,
M.
, and
Weaver
,
D. S.
,
2016
, “
Modeling of Streamwise and Transverse Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051304
.10.1115/1.4032817
17.
Hassan
,
M.
, and
Weaver
,
D.
,
2017
, “
Pitch and Mass Ratio Effects on Transverse and Streamwise Fluidelastic Instability in Parallel Triangular Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061302
.10.1115/1.4037717
18.
Tan
,
W.
,
Li
,
Z.
,
Wu
,
H.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Zou
,
J.
, and
Zhu
,
G.
,
2018
, “
Experiment Study on Fluidelastic Instability of Tube Bundles Consisting of Different Frequency Tubes With Visual Image Processing System
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031302
.10.1115/1.4054419
19.
Thothadri
,
M.
, and
Moon
,
F. C.
,
1998
, “
Helical Wave Oscillations in a Row of Cylinders in a Cross-Flow
,”
J. Fluids Struct.
,
12
(
5
), pp.
591
613
.10.1006/jfls.1998.0156
20.
Guo
,
K.
,
Xu
,
W.
,
Jia
,
Z.
, and
Tan
,
W.
,
2020
, “
Investigation of Fluid-Elastic Instability in Tube Arrays at Low Mass Damping Parameters in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
142
(
1
), p.
011401
.10.1115/1.4045022
You do not currently have access to this content.