Abstract

This paper describes an incident that occurred during the baseline inspections of pre-commissioning activities performed on a 20-in. metallurgically bonded corrosion resistant alloy (CRA) clad pipeline of an approximate length equal to 2.7 km. The inspection tool, deployed as part of the baseline inspections before the startup of the pipeline, was damaged in the CRA clad pipeline. This damage occurred despite extensive computer simulations, carried out before the inspection, which indicated that the tool, an ultrasonic (UT) pig, was able to traverse the length of the pipe without major issues. The application of the pressure surges was successful in dislodging the UT pig; however, as a direct consequence, the UT pig crashed into the pig receiver and sustained significant damage. The sealing pigs that were trailing behind the UT pig also collided with the rear of the UT pig, and it was at this junction that all further data transmission was ceased. A metal swarf was discovered upon inspection of the UT pig after retrieval, indicating that the inner wall of the pipeline also sustained damage. An analysis of the swarf indicated that it comprised solely of the CRA alloy that was metallurgically bonded to the inner wall of the carbon steel pipe. It was concluded that, due to the anticorrosive nature of the CRA material and high-quality control standards upheld during the manufacture of CRA pipes, the baseline in-line and routine inspections were unnecessary and can be detrimental if the inspection tool becomes impacted, thereby compromising the containment of the CRA layer.

References

1.
Mousselli
,
A. H.
,
1981
,
Offshore Pipeline Design, Analysis, and Methods
, PennWell Books, Tulsa, OK.
2.
Bai
,
Q.
, and
Bai
,
Y.
,
2014
,
Subsea Pipeline Design, Analysis, and Installation
,
Gulf Professional Publishing
, Houston, TX.
3.
Braestrup
,
M.
,
Andersen
,
J. B.
,
Andersen
,
L. W.
,
Bryndum
,
M. B.
, and
Nielsen
,
N.-J. R.
,
2009
,
Design and Installation of Marine Pipelines
,
Wiley
, Hoboken, NJ.
4.
Palmer
,
A. C.
,
2008
,
Subsea Pipeline Engineering
, PennWell Books, Tulsa, OK.
5.
Randolph
,
M.
, and
Gourvenec
,
S.
,
2017
,
Offshore Geotechnical Engineering
,
CRC Press, Boca Raton, FL.
6.
Kyriakides
,
S.
, and
Corona
,
E.
,
2007
,
Mechanics of Offshore Pipelines: Volume 1 Buckling and Collapse
, Vol.
1
,
Elsevier
, Amsterdam, The Netherlands.
7.
Revie
,
R. Winston
, ed.,
2015
,
Oil and Gas Pipelines: Integrity and Safety Handbook
,
Wiley
, Hoboken, NJ.
8.
Speight
,
J. G.
,
2014
,
Handbook of Offshore Oil and Gas Operations
,
Elsevier
, Amsterdam, The Netherlands.
9.
El-Reedy
,
M. A.
,
2016
,
Project Management in the Oil and Gas Industry
,
Wiley, Hoboken, NJ.
10.
Guo
,
B. S.
,
Song
,
A.
,
Ghalambor
,
T. R.
,
Lin
., and
Chacko
,
J.
,
2005
,
Offshore Pipelines
,
Elsevier
, Amsterdam, The Netherlands.
11.
Guo
,
B.
,
Song
,
S.
,
Ghalambor
,
A.
, and
Ran Lin
,
T.
,
2013
,
Offshore Pipelines: Design, Installation, and Maintenance
,
Gulf Professional Publishing
, Houston, TX.
12.
Kaiser
,
M. J.
,
2020
,
The Offshore Pipeline Construction Industry: Activity Modeling and Cost Estimation in the U.S. Gulf of Mexico
,
Gulf Professional Publishing
, Houston, TX.
13.
Reda
,
A. M.
,
Forbes
,
G. L.
, and
Sultan
,
I. A.
,
2011
, “
Characterisation of Slug Flow Conditions in Pipelines for Fatigue Analysis
,”
ASME
Paper No. OMAE2011-49583.10.1115/OMAE2011-49583
14.
Sultan
,
I. A.
,
Reda
,
A. M.
, and
Forbes
,
G. L.
,
2013
, “
Evaluation of Slug Flow-Induced Flexural Loading in Pipelines Using a Surrogate Model
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
3
), p. 031703. 10.1115/1.4024207
15.
Reda
,
A.
,
Forbes
,
G.
,
McKee
,
K.
, and
Howard
,
I.
,
2014
, “
Vibration of a Curved Subsea Pipeline Due to Internal Slug Flow
,”
Proceedings of the 43rd International Congress on Noise Control Engineering
,
Australian Acoustical Society
, Melbourne, Australia, Nov. 16–19.https://www.researchgate.net/publication/271020805_Vibration_of_a_curved_subsea_pipeline_due_to_internal_slug_flow
16.
Mohmmed
,
A. O.
,
Al-Kayiem
,
H. H.
,
Nasif
,
M. S.
, and
Time
,
R. W.
,
2019
, “
Effect of Slug Flow Frequency on the Mechanical Stress Behavior of Pipelines
,”
Int. J. Pressure Vessels Piping
,
172
, pp.
1
9
.10.1016/j.ijpvp.2019.03.012
17.
Reda
,
A.
,
Forbes
,
G. L.
,
Sultan
,
I. A.
, and
Howard
,
I. M.
,
2019
, “
Pipeline Slug Flow Dynamic Load Characterization
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
1
), p.
011701
.10.1115/1.4040414
18.
Reda
,
A.
,
Howard
,
I. M.
,
Forbes
,
G. L.
,
Sultan
,
I. A.
, and
McKee
,
K. K.
,
2017
, “
Design and Installation of Subsea Cable, Pipeline and Umbilical Crossing Interfaces
,”
Eng. Failure Anal.
,
81
, pp.
193
203
.10.1016/j.engfailanal.2017.07.001
19.
Forbes
,
G. L.
, and
Reda
,
A. M.
, “
Influence of Axial Boundary Conditions on Free Spanning Pipeline Natural Frequencies
,”
ASME
Paper No. OMAE2013-10147.10.1115/OMAE2013-10147
20.
Reda
,
A.
,
McKee
,
K. K.
,
Howard
,
I. M.
, and
Sultan
,
I. A.
,
2019
, “
When Is a Subsea Anchor Required for a Short Pipeline/SCR System?
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
278
298
.10.1016/j.ijpvp.2019.02.009
21.
Reda
,
A.
,
Rawlinson
,
A.
,
Sultan
,
I. A.
,
Elgazzar
,
M. A.
, and
Howard
,
I. M.
,
2020
, “
Guidelines for Safe Cable Crossing Over a Pipeline
,”
Appl. Ocean Res.
,
102
, p.
102284
.10.1016/j.apor.2020.102284
22.
Reda
,
A.
,
Elgazzar
,
M. A.
,
Sultan
,
I. A.
,
Shahin
,
M. A.
, and
McKee
,
K. K.
,
2021
, “
Failure Analysis of Articulated Paddings at Crossing Interface Between Crossing Cable and Crossed Pipeline
,”
Appl. Ocean Res.
,
115
, p.
102850
.10.1016/j.apor.2021.102850
23.
Hao
,
X.
,
Liu
,
R.
,
Li
,
C.
, and
Yu
,
Z.
,
2021
, “
Finite-Element Analysis of Pipelines With Axial Walking and Lateral Buckling
,”
J. Pipeline Syst. Eng. Pract.
,
12
(
3
), p.
04021013
.10.1061/(ASCE)PS.1949-1204.0000550
24.
Hong
,
Z.
,
Zhou
,
Z.
,
Liu
,
W.
,
Yan
,
Y.
,
Fu
,
D.
, and
Yan
,
S.
,
2020
, “
Analysis of Walking Rate for Subsea Pipelines Neighbouring the Pipeline End Terminations/Pipeline End Manifolds
,”
Ocean Eng.
,
218
, p.
108087
.10.1016/j.oceaneng.2020.108087
25.
Sunday
,
N.
,
Settar
,
A.
,
Chetehouna
,
K.
, and
Gascoin
,
N.
,
2021
, “
An Overview of Flow Assurance Heat Management Systems in Subsea Flowlines
,”
Energies
,
14
(
2
), p.
458
.10.3390/en14020458
26.
AS, DNVGL,
2017
, “
Submarine Pipeline Systems
,” Høvik, Norway, Report No. DNV-OS-F101.
27.
ISO
,
2009
, “
Petroleum, Petrochemical and Natural Gas Industries—Pipeline Transportation Systems
,” ISO, Geneva, Switzerland, Standard No.
ISO 13623
.https://www.iso.org/obp/ui/fr/#iso:std:iso:13623:ed-2:v1:en
You do not currently have access to this content.