Abstract

In this paper, torsional vibration band gap properties of a fluid filled pipe were studied by using the transfer matrix method (TMM). By comparing the results obtained from the fem software, the established torsional dynamic model and the proposed method were verified. The effects of pipe wall's material and parameters of support on the torsional vibration band gap properties were analyzed. Furthermore, the relationship between torsional displacement and vibration band gaps was investigated. These attenuation regions of responses show good agreement with the frequency of Bragg band gaps. Explained the locally resonant (LR) phononic crystals (PCs) band gaps form mechanism from the point of mechanical impedance mismatch theory, the results show that the peak frequency of impedance mismatch defines the beginning of both LRs and Bragg band gaps. In essence, the locally resonant is the same as periodic support from the impedance theory. The results of this paper could give some valuable suggestions on the vibration control of the pipeline system.

References

1.
Ahmadi
,
A.
, and
Keramat
,
A.
,
2010
, “
Investigation of Fluid-Structure Interaction With Various Types of Junction Coupling
,”
J. Fluid Struct.
,
26
(
7–8
), pp.
1123
1141
.10.1016/j.jfluidstructs.2010.08.002
2.
Walker
,
J. S.
, and
Phillips
,
J. W.
,
1977
, “
Pulse Propagation in Fluid-Filled Tubes
,”
ASME J. Appl. Mech.
,
44
(
1
), pp.
31
35
.10.1115/1.3424009
3.
Tijsseling
,
A. S.
,
Vardy
,
A. E.
, and
Fan
,
D.
,
1996
, “
Fluid-Structure Interaction in Liquid-Filled Piping Systems
,”
J. Fluid Struct.
,
10
(
4
), pp.
395
420
.10.1006/jfls.1996.0025
4.
Wiggert
,
D. C.
,
Hatfield
,
F. J.
, and
Stuckenbruck
,
S.
,
1987
, “
Analysis of Liquid and Structural Transients in Piping by the Method of Characteristics
,”
ASME J. Fluid Eng.
,
109
(
2
), pp.
161
165
.10.1115/1.3242638
5.
Rivin
,
E.
,
2004
, “
Passive Vibration Isolation
,”
ASME Appl. Mech. Rev.
,
57
(
6
), pp.
B31
B32
.10.1115/1.1849173
6.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.10.1016/0022-460X(92)90059-7
7.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.10.1103/PhysRevLett.71.2022
8.
Shen
,
H.
,
Wen
,
J.
,
Yu
,
D.
,
Asgari
,
M.
, and
Wen
,
X.
,
2013
, “
Control of Sound and Vibration of Fluid-Filled Cylindrical Shells Via Periodic Design and Active Control
,”
J. Sound Vib.
,
332
(
18
), pp.
4193
4209
.10.1016/j.jsv.2013.03.007
9.
Shen
,
H.
,
Païdoussis
,
M. P.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2014
, “
The Beam-Mode Stability of Periodic Functionally-Graded-Material Shells Conveying Fluid
,”
J. Sound Vib.
,
333
(
10
), pp.
2735
2749
.10.1016/j.jsv.2014.01.002
10.
Wu
,
J.
,
Tijsseling
,
A. S.
,
Sun
,
Y.
, and
Yin
,
Z.
,
2020
, “
In-Plane Wave Propagation Analysis of Fluid-Filled L-Shape Pipe With Multiple Supports by Using Impedance Synthesis Method
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104234
.10.1016/j.ijpvp.2020.104234
11.
Mead
,
D. J.
,
1973
, “
A General Theory of Harmonic Wave Propagation in Linear Periodic Systems With Multiple Coupling
,”
J. Sound Vib.
,
27
(
2
), pp.
235
260
.10.1016/0022-460X(73)90064-3
12.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: I. Mono-Coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.10.1016/S0022-460X(75)80227-6
13.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: II. Multi-Coupled Systems, With and Without Damping
,”
J. Sound Vib.
,
40
(
1
), pp.
19
39
.10.1016/S0022-460X(75)80228-8
14.
Mead
,
D. J.
,
Zhu
,
D. C.
, and
Bardell
,
N. S.
,
1988
, “
Free Vibration of an Orthogonally Stiffened Flat Plate
,”
J. Sound Vib.
,
127
(
1
), pp.
19
48
.10.1016/0022-460X(88)90348-3
15.
Mead
,
D. J.
,
2009
, “
The Forced Vibration of One-Dimensional Multi-Coupled Periodic Structures: An Application to Finite Element Analysis
,”
J. Sound Vib.
,
319
(
1–2
), pp.
282
304
.10.1016/j.jsv.2008.05.026
16.
Yu
,
D.
,
Liu
,
Y.
,
Wang
,
G.
,
Cai
,
L.
, and
Qiu
,
J.
,
2006
, “
Low Frequency Torsional Vibration Gaps in the Shaft With Locally Resonant Structures
,”
Phys. Lett. A
,
348
(
3–6
), pp.
410
415
.10.1016/j.physleta.2005.08.067
17.
Koo
,
G. H.
, and
Park
,
Y. S.
,
1998
, “
Vibration Reduction by Using Periodic Supports in a Piping System
,”
J. Sound Vib.
,
210
(
1
), pp.
53
68
.10.1006/jsvi.1997.1292
18.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Flexural Wave Band Gaps in Locally Resonant Thin Plates With Periodically Attached Spring–Mass Resonators
,”
J. Appl. Phys.,
45
(
19
), p.
195401
.10.1088/0022-3727/45/19/195401
19.
Wang
,
Z.
,
Zhang
,
P.
, and
Zhang
,
Y.
,
2013
, “
Locally Resonant Band Gaps in Flexural Vibrations of a Timoshenko Beam With Periodically Attached Multioscillators
,”
Math. Probl. Eng.
,
2013
(
2
), p.
100
.10.1155/2013/146975
20.
Zuo
,
S.
,
Ni
,
T.
,
Wu
,
X.
, and
Fan
,
J.
,
2015
, “
Studies of Band Gaps in Flexural Vibrations of a Locally Resonant Beam With Novel Multi-Oscillator Configuration
,”
J. Vib. Control
,
23
(
10
), pp.
1663
1674
.10.1177/1077546315598032
21.
Yu
,
D.
,
Liu
,
Y.
,
Zhao
,
H.
,
Wang
,
G.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Locally Resonant Structures With Two Degrees of Freedom
,”
Phys. Rev. B
,
73
(
6
), p.
64301
.10.1103/PhysRevB.73.064301
22.
Yu
,
D.
,
Liu
,
Y.
,
Wang
,
G.
,
Zhao
,
H.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Timoshenko Beams With Locally Resonant Structures
,”
J. Appl. Phys.
,
100
(
12
), p.
124901
.10.1063/1.2400803
23.
Yu
,
D.
,
Wen
,
J.
,
Zhao
,
H.
,
Liu
,
Y.
, and
Wen
,
X.
,
2008
, “
Vibration Reduction by Using the Idea of Phononic Crystals in a Pipe-Conveying Fluid
,”
J. Sound Vib.
,
318
(
1–2
), pp.
193
205
.10.1016/j.jsv.2008.04.009
24.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.10.1115/1.4004592
25.
Xiao
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2013
, “
Flexural Wave Propagation in Beams With Periodically Attached Vibration Absorbers: Band-Gap Behavior and Band Formation Mechanisms
,”
J. Sound Vib.
,
332
(
4
), pp.
867
893
.10.1016/j.jsv.2012.09.035
26.
Chuang
,
K.
,
Yuan
,
Z.
,
Guo
,
Y.
, and
Lv
,
X.
,
2020
, “
Extracting Torsional Band Gaps and Transient Waves in Phononic Crystal Beams: Method and Validation
,”
J. Sound Vib.
,
467
, p.
115004
.10.1016/j.jsv.2019.115004
27.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.10.1126/science.289.5485.1734
You do not currently have access to this content.