Abstract

Using miniature compact tension (mini-C(T)) (4 mm thick, 0.16T) specimens to determine toughness in reactor pressure vessel (RPV) steels permits the ductile-to-brittle transition temperature to be derived from small amounts of material and allows more effective use of surveillance specimens. However, questions have been raised as to whether the failure mechanisms are the same in miniature and large specimens, something that must be ensured when transferring fracture results obtained in mini-C(T) specimens to larger components. This work, performed within the FRACTESUS project, presents toughness measurements and detailed fractography on both a homogeneously brittle base metal and a relatively ductile, inhomogeneous weld to assess the transferability of fracture data. The fractography shows that brittle fracture initiates within the part of specimen experiencing small-scale yielding (SSY), so long as the toughness measurement is valid. Similarly, although the precrack front asymmetry appears more marked in smaller specimens, as long as the deviation from planarity is within the American Society for Testing and Materials (ASTM) E1921 limits, the asymmetry does not affect the location of the initiation site. For materials showing a variety of fracture modes, the fracture modes observed at the initiation sites are consistent with those observed in larger specimens. Where data are available, the stress and strain conditions at the initiation sites are also found to be consistent in mini-C(T) and larger specimens. These observations support the thesis that toughness measurements made on mini-C(T) specimens reflect the same material characteristics and failure mechanisms as those made on larger specimens.

References

1.
Brynk
,
T.
,
Arffman
,
P.
,
Altstadt
,
E.
,
Kopriva
,
R.
,
Obermeier
,
F.
, and
Serrano
,
M.
,
2022
, “
FRACTESUS Project: Final Selection of RPV Materials for Unirradiated and Irradiated Round Robin
,”
ASME
Paper No. PVP2022-83871.10.1115/PVP2022-83871
2.
ASTM
,
2021
, “
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
,”
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No.
ASTM E1921-21
.https://cdn.standards.iteh.ai/samples/109642/f6a4ea2ae5394f0c9d6e26d258193e62/ASTM-E1921-21.pdf
3.
Wallin
,
K.
,
1984
, “
The Scatter in KIC Results
,”
Eng. Fract. Mech.
,
19
(
6
), pp.
1085
1093
.10.1016/0013-7944(84)90153-X
4.
Wallin
,
K.
,
2002
, “
Master Curve Analysis of the ‘Euro’ Fracture Toughness Dataset
,”
Eng. Fract. Mech.
,
69
(
4
), pp.
451
481
.10.1016/S0013-7944(01)00071-6
5.
Scibetta
,
M.
,
Lucon
,
E.
, and
Van Walle
,
E.
,
2002
, “
Optimum Use of Broken Charpy Specimens From Surveillance Programs for the Application of the Master Curve Approach
,”
Int. J. Fract.
,
116
, pp.
231
244
.10.1023/A:1020165900918
6.
Miura
,
N.
, and
Soneda
,
N.
,
2010
, “
Evaluation of Fracture Toughness by Master Curve Approach Using Miniature C(T) Specimens
,”
ASME
Paper No. PVP2010-25862.10.1115/PVP2010-25862
7.
Sánchez
,
M.
,
Cicero
,
S.
,
Arroyo
,
B.
, and
Cimentada
,
A.
,
2023
, “
On the Use of Mini-CT Specimens to Define the Master Curve of Unirradiated Reactor Pressure Vessel Steels With Relatively High Reference Temperatures
,”
Theor. Appl. Fract. Mech.
,
124
, p.
103736
.10.1016/j.tafmec.2022.103736
8.
Yamamoto
,
M.
,
Kimura
,
A.
,
Onizawa
,
K.
,
Yoshimoto
,
K.
,
Ogawa
,
T.
,
Mabuchi
,
Y.
,
Viehrig
,
H. W.
,
Miura
,
N.
, and
Soneda
,
N.
,
2014
, “
A Round Robin Program of Master Curve Evaluation Using Miniature C(T) Specimens: 3rd Report—Comparison of T0 Under Various Selections of Temperature Conditions
,”
ASME
Paper No. PVP2014-28898.10.1115/PVP2014-28898
9.
Chaouadi
,
R.
,
Van Walle
,
E.
,
Scibetta
,
M.
, and
Gérard
,
R.
,
2016
, “
On the Use of Miniaturized CT Specimens for Fracture Toughness Characterization of RPV Materials
,”
ASME
Paper No. PVP2016-63607.10.1115/PVP2016-63607
10.
Sokolov
,
M. A.
,
2022
, “
Use of Mini-CT Specimens for Fracture Toughness Characterization of Irradiated Highly Embrittled Weld
,”
ASME
Paper No. PVP2022-84827.10.1115/PVP2022-84827
11.
Sanchez
,
M.
,
Cicero
,
S.
, and
Arroyo
,
B.
,
2024
, “
Mini-C(T) Specimens for Master Curve Analysis of Structural Steels Operating Within Their Ductile-to-Brittle Transition Region
,”
Eng. Fract. Mech.
,
298
, p.
109917
.10.1016/j.engfracmech.2024.109917
12.
Sokolov
,
M. A.
,
2017
, “
Use of Mini-CT Specimens for Fracture Toughness Characterization of Low Upper-Shelf Linde 80 Weld
,”
ASME
Paper No. PVP2017-65904.10.1115/PVP2017-65904
13.
Yamamoto
,
M.
,
Kimura
,
A.
,
Onizawa
,
K.
,
Yoshimoto
,
K.
,
Ogawa
,
T.
,
Chiba
,
A.
,
Hirano
,
T.
,
Sugihara
,
T.
,
Sugiyama
,
M.
, and
Miura
,
N.
,
2012
, “
A Round Robin Program of Master Curve Evaluation Using Miniature C(T) Specimens: First Round Robin Test on Uniform Specimens of Reactor Pressure Vessel Material
,”
ASME
Paper No. PVP2012-78661.10.1115/PVP2012-78661
14.
Yamamoto
,
M.
,
Onizawa
,
K.
,
Yoshimoto
,
K.
,
Ogawa
,
T.
,
Mabuchi
,
Y.
, and
Miura
,
N.
,
2013
, “
Round Robin Program of Master Curve Evaluation Using Miniature C(T) Specimens—2nd Report: Fracture Toughness Comparison in Specified Loading Rate Condition
,”
ASME
Paper No. PVP2013-97936.10.1115/PVP2013-97936
15.
Yamamoto
,
M.
, and
Miura
,
N.
,
2015
, “
Applicability of Miniature C(T) Specimens for the Master Curve Evaluation of RPV Weld Metal
,”
ASME
Paper No. PVP2015-45545.10.1115/PVP2015-45545
16.
Wallin
,
K.
,
Yamamoto
,
M.
, and
Ehrnstén
,
U.
,
2016
, “
Location of Initiation Sites in Fracture Toughness Testing Specimens: The Effect of Size and Side Grooves
,”
ASME
Paper No. PVP2016-63078.10.1115/PVP2016-63078
17.
Lambrecht
,
M.
,
Chaouadi
,
R.
,
Li
,
M.
,
Uytdenhouwen
,
I.
, and
Scibetta
,
M.
,
2020
, “
On the Possible Relaxation of the ASTM E1921 and ASTM E1820 Standard Specifications With Respect to the Use of the Mini-CT Specimen
,”
Mater. Perform. Charact.
,
9
(
5
), pp.
593
607
.10.1520/MPC20190217
18.
Lindqvist
,
S.
, and
Kuutti
,
J.
,
2022
, “
Sensitivity of the Master Curve Reference Temperature T0 to the Crack Front Curvature
,”
Theor. Appl. Fract. Mech.
,
122
, p.
103558
.10.1016/j.tafmec.2022.103558
19.
Tobita
,
T.
,
Nishiyama
,
Y.
,
Ohtsu
,
T.
,
Udagawa
,
M.
,
Katsuyama
,
J.
, and
Onizawa
,
K.
,
2015
, “
Fracture Toughness Evaluation of Reactor Pressure Vessel Steels by Master Curve Method Using Miniature Compact Tension Specimens
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051405
.10.1115/1.4029428
20.
Sugihara
,
T.
,
Hirota
,
T.
,
Sakamoto
,
H.
,
Yoshimoto
,
K.
,
Tsutsumi
,
K.
, and
Murakami
,
T.
,
2017
, “
Applicability of Miniature C(T) Specimen to Fracture Toughness Evaluation for the Irradiated Japanese Reactor Pressure Vessel Steel
,”
ASME
Paper No. PVP2017-66206.10.1115/PVP2017-66206
21.
Sokolov
,
M. A.
, and
Nanstad
,
R. K.
,
1999
, “
Comparison of Irradiation-Induced Shifts of KJc and Charpy Impact Toughness for Reactor Pressure Vessel Steels
,”
ASTM Spec. Tech. Publ.
, 1325, pp.
167
190
.10.1520/STP13863S
22.
Sokolov
,
M. A.
,
2018
, “
Use of Mini-CT Specimens for Fracture Toughness Characterization of Low Upper-Shelf Linde 80 Weld Before and After Irradiation
,”
ASME
Paper No. PVP2018-84804.10.1115/PVP2018-84804
23.
Sánchez
,
M.
,
Cicero
,
S.
,
Kirk
,
M.
,
Altstadt
,
E.
,
Server
,
W.
, and
Yamamoto
,
M.
,
2023
, “
Using Mini-CT, Specimens for the Fracture Characterization of Ferritic Steels Within the Ductile to Brittle Transition Range: A Review
,”
Metals
,
13
(
1
), p.
176
.10.3390/met13010176
24.
Sánchez
,
M.
,
Cicero
,
S.
,
Arroyo
,
B.
,
Bonny
,
G.
,
Swan
,
H.
,
Lappalainen
,
P.
,
Altstadt
,
E.
,
Petit
,
T.
, and
Obermeier
,
F.
,
2023
, “
FRACTESUS Project Overview: Objectives, Organisation and Initial Findings
,”
Procedia Struct. Integr.
,
47
, pp.
22
29
.10.1016/j.prostr.2023.06.034
25.
Sanchez
,
M.
,
Cicero
,
S.
,
Arroyo
,
B.
, and
Arrieta
,
S.
,
2022
, “
Master Curve Evaluation of ANP-5 Steel Using Mini-CT Specimens
,”
Procedia Struct. Integr.
,
42
, pp.
218
223
.10.1016/j.prostr.2022.12.027
26.
Brumovsky
,
M.
,
Davies
,
L. M.
,
Kryukov
,
A.
,
Lyssakov
,
V. N.
, and
Nanstad
,
R. K.
,
2001
, “
Reference Manual on the IAEA JRQ Correlation Monitor Steel for Irradiation Damage Studies
,” International Atomic Energy Agency, Vienna, Austria, Report No.
IAEA-TECDOC-1230
.https://www-pub.iaea.org/MTCD/publications/PDF/te_1230_prn.pdf
27.
Francois
,
D.
,
Pineau
,
A.
, and
Zaoui
,
A.
,
2013
,
Mechanical Behaviour of Materials: Volume II: Fracture Mechanics and Damage
,
Springer Dordrecht
,
Berlin, Germany
.
28.
Nevalainen
,
M.
, and
Dodds
,
R. H.
,
1996
, “
Numerical Investigation of 3-D Constraint Effects on Brittle Fracture in SE(B) and C(T) Specimens
,”
U.S. Nuclear Regulatory Commission
,
Washington, DC
, Report No.
NUREG/CR-6317 UILU-ENG-95-2001.
https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/000/28000241.pdf
29.
Nevalainen
,
M.
, and
Dodds
,
R. H.
,
1996
, “
Numerical Investigation of 3-D Constraint Effects on Brittle Fracture in SE(B) and C(T) Specimens
,”
Int. J. Fract.
,
74
(
2
), pp.
131
161
.10.1007/BF00036262
30.
Serrano
,
M.
,
2007
, “
Evaluacion computacional del efecto de la perdida de constriccion en la tenacidad de fractura de la vasija de reactored nucleares
,” Ph.D. thesis,
Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingineiros Industriales
,
Madrid, Spain
.
31.
Gurovich
,
B. A.
,
Kuleshova
,
E. A.
, and
Lavrenchuk
,
O. V.
,
1996
, “
Comparative Study of Fracture in Pressure Vessel Steels A533B and A508
,”
J. Nucl. Mater.
,
228
(
3
), pp.
330
337
.10.1016/0022-3115(95)00226-X
32.
Gibson
,
G. P.
,
Capel
,
M.
, and
Druce
,
S. G.
,
1991
, “
Effect of Heat Treatment on the Fracture Toughness Transition Properties of an A508 Class 3 Steel
,” Defect Assessment in Components-Fundamentals and Applications, ESIS/EGF Pub. 9, Mechanical Engineering Publications, London, UK, pp.
587
611
.
33.
Druce
,
S. G.
,
Gibson
,
G. P.
, and
Capel
,
M.
,
1992
, “
Microstructural Control of Cleavage Fracture in an A508 Class 3 Pressure Vessel Steel
,”
Fracture Mechanics: 22nd Symposium, ASTM STP 1131
, Atlanta, GA, June 26–28, pp.
682
706
.
34.
Ortner
,
S. R.
, and
Hippsley
,
C. A.
,
1996
, “
Two Component Description of Ductile to Brittle Transition in Ferritic Steel
,”
Mater. Sci. Technol.
,
12
(
12
), pp.
1035
1042
.10.1080/02670836.1996.11665719
35.
Serrano
,
M.
,
Perosanz
,
F. J.
, and
Lapeña
,
J.
,
2004
, “
Master Curve of Irradiated JRQ Material
,”
The Effects of Radiation on Materials: 21st International Symposium,
ASTM STP 1447, Tucson, AZ, June 18–20,
pp.
277
288
.10.1520/STP11233S
36.
Nishiyama
,
Y.
,
Onizawa
,
K.
,
Suzuki
,
M.
,
Anderegg
,
J. W.
,
Nagai
,
Y.
,
Toyama
,
T.
,
Hasegawa
,
M.
, and
Kameda
,
J.
,
2008
, “
Effects of Neutron Irradiation Induced Intergranular Phosphorus Segregation and Hardening on Embrittlement in Reactor Pressure Vessel Steels
,”
Acta Mater.
,
56
(
16
), pp.
4510
4521
.10.1016/j.actamat.2008.05.026
37.
Ortner
,
S.
,
2006
, “
The Ductile-to-Brittle Transition in Steels Controlled by Particle Cracking
,”
Fatigue Fract. Eng. Mater. Struct.
,
29
, pp.
752
769
.10.1111/j.1460-2695.2006.00996.x
38.
Zhou
,
W.
, and
Knott
,
J. F.
,
1990
, “
Observations of the Initiation of Transgranular Cleavage From Prior Austenite Grain Boundaries
,”
Scr. Metall. Mater.
,
24
(
12
), pp.
2247
2252
.10.1016/0956-716X(90)90073-P
39.
Tweed
,
J. H.
, and
Knott
,
J. F.
,
1987
, “
Mechanisms of Failure in C-Mn Weld Metals
,”
Acta Metall.
,
35
(
7
), pp.
1401
1414
.10.1016/0001-6160(87)90087-3
40.
Hein
,
H.
,
Kobiela
,
J.
,
Brumovsky
,
M.
,
Houtilainen
,
C.
,
Marini
,
B.
,
Radiguet
,
B.
,
Startsev
,
O.
, et al.,
2018
, “
Addressing of Specific Uncertainties in Determination of Fracture Toughness in the SOTERIA Project
,” Fontevraud 9,
Avignon, France
, Sept. 17–20.https://www.researchgate.net/publication/328287456_Addressing_of_specific_uncertainties_in_determination_of_RPV_fracture_toughness_in_the_SOTERIA_project
41.
Que
,
Z.
,
Lindroos
,
M.
,
Lydman
,
J.
,
Hytonen
,
N.
,
Lindqvist
,
S.
,
Efsing
,
P.
,
Nevasmaa
,
P.
, and
Arffman
,
P.
,
2022
, “
Brittle Fracture Initiation in Decommissioned Boiling Water Reactor Pressure Vessel Head
,”
J. Nucl. Mater.
,
569
, p.
153925
.10.1016/j.jnucmat.2022.153925
42.
Yang
,
W. J.
,
Lee
,
B. S.
,
Huh
,
M. Y.
, and
Hong
,
J. H.
,
2003
, “
Application of the Local Fracture Stress Model on the Cleavage Fracture of the Reactor Pressure Vessel Steels in the Transition Temperature Region
,”
J. Nucl. Mater.
,
317
(
2–3
), pp.
234
242
.10.1016/S0022-3115(03)00106-5
43.
Yang
,
W. J.
,
Lee
,
B. S.
,
Oh
,
Y. J.
,
Huh
,
M. Y.
, and
Hong
,
J. H.
,
2004
, “
Microstructural Parameters Governing Cleavage Fracture Behaviors in the Ductile-Brittle Transition Region in Reactor Pressure Vessel Steels
,”
Mater. Sci. Eng. A
,
379
(
1–2
), pp.
17
26
.10.1016/j.msea.2003.10.289
You do not currently have access to this content.