Abstract

Closed-loop damage diagnosis method has attracted some attention in recent years; however, for lack of sufficient measuring points, it is difficult to achieve robust control of large structures cause the output dimension is not enough to meet the demand of system controllability and observability. On this basis, a mode sensitivity enhancement method for beam bridge using high-density strain feedback is proposed, in which high density dynamic strain measurements of the girder structure can be collected by distributed fiber sensor. Utilizing strain–displacement transformation relationship of the girder structure, the dynamic displacements can be obtained and used as output with high dimension to achieve the feedback control for eigenvalue sensitivity enhancement. To verify the proposed method, a series of numerical case studies of a beam bridge structure are performed, and it is demonstrated that the eigenvalue sensitivity can be enhanced effectively.

References

1.
Zhang
,
Y.
, and
Yuen
,
K. V.
,
2022
, “
Review of Artificial Intelligence-Based Bridge Damage Detection
,”
Adv. Mech. Eng.
,
14
(
9
), p.
168781322211227
.10.1177/16878132221122770
2.
Mostafa
,
N.
,
Maio
,
D. D.
,
Loendersloot
,
R.
, and
Tinga
,
T.
,
2022
, “
Railway Bridge Damage Detection Based on Extraction of Instantaneous Frequency by Wavelet Synchrosqueezed Transform
,”
Adv. Bridge Eng.
,
3
(
1
), p.
12
.10.1186/s43251-022-00063-0
3.
Ma
,
K. C.
,
Yi
,
T. H.
,
Yang
,
D. H.
,
Li
,
H. N.
, and
Liu
,
H.
,
2021
, “
Nonlinear Uncertainty Modeling Between Bridge Frequencies and Multiple Environmental Factors Based on Monitoring Data
,”
J. Perform. Constr. Facil.
,
35
(
5
), p.
04021056
.10.1061/(ASCE)CF.1943-5509.0001636
4.
Yang
,
D. S.
, and
Wang
,
C. M.
,
2022
, “
Bridge Damage Detection Using Reconstructed Mode Shape by Improved Vehicle Scanning Method
,”
Eng. Struct.
,
263
, p.
114373
.10.1016/j.engstruct.2022.114373
5.
Zhang
,
Y.
, and
Cao
,
Y. Y.
,
2015
, “
A Fuzzy Quantification Approach of Uncertainties in an Extreme Wave Height Modelling
,”
Acta Oceanol. Sin.
,
34
(
3
), pp.
90
98
.10.1007/s13131-015-0636-5
6.
Zhang
,
Y.
,
2015
, “
On the Climatic Uncertainty to the Environment Extremes: A Singapore Case and Statistical Approach
,”
Pol. J. Environ. Stud.
,
24
(
3
), pp.
1413
1422
.10.15244/pjoes/31718
7.
Zhang
,
Y.
,
2015
, “
A Fuzzy Residual Strength Based Fatigue Life Prediction Method
,”
Struct. Eng. Mech.
,
56
(
2
), pp.
201
221
.10.12989/sem.2015.56.2.201
8.
Zhang
,
Z.
,
Liu
,
X.
,
Zhang
,
Y.
,
Zhou
,
M.
, and
Chen
,
J.
,
2020
, “
Time Interval of Multiple Crossings of the Wiener Process and a Fixed Threshold in Engineering
,”
Mech. Syst. Signal Process.
,
135
, p.
106389
.10.1016/j.ymssp.2019.106389
9.
Lifshitz
,
J. M.
, and
Rotem
,
A.
,
1969
, “
Determination of Reinforcement Unbonding of Composites by a Vibration Technique
,”
J. Compos. Mater.
,
3
(
3
), pp.
412
423
.10.1177/002199836900300305
10.
West
,
W. M.
,
1984
, “
Illustration of the Use of Modal Assurance Criterion to Detect Structural Changes in an Orbiter Test Specimen
,”
Proceedings of Air Force Conference on Aircraft Structural Integrity
, pp.
1
6
.
11.
Yang
,
Z. C.
, and
Wang
,
L.
,
2010
, “
Structural Damage Detection by Changes in Natural Frequencies
,”
J. Intell. Mater. Syst. Struct.
,
21
(
3
), pp.
309
319
.10.1177/1045389X09350332
12.
Zhou
,
X. Q.
,
Xia
,
Y.
, and
Weng
,
S.
,
2015
, “
L1 Regularization Approach to Structural Damage Detection Using Frequency Data
,”
Struct. Control Health
,
14
(
6
), pp.
571
582
.10.1177/1475921715604386
13.
Onchis
,
D. M.
, and
Rajmic
,
P.
,
2014
, “
Generalized Goertzel Algorithm for Computing the Natural Frequencies of Cantilever Beams
,”
Signal Process.
,
96
, pp.
45
50
.10.1016/j.sigpro.2013.07.026
14.
Yang
,
Z.
,
Chen
,
X.
,
Yu
,
J.
,
Liu
,
R.
,
Liu
,
Z.
, and
He
,
Z.
,
2013
, “
A Damage Identification Approach for Plate Structures Based on Frequency Measurements
,”
Nondestr. Test. Eval.
,
28
(
4
), pp.
321
341
.10.1080/10589759.2013.801472
15.
Na
,
C.
,
Kim
,
S. P.
, and
Kwak
,
H. G.
,
2011
, “
Structural Damage Evaluation Using Genetic Algorithm
,”
J. Sound Vib.
,
330
(
12
), pp.
2772
2783
.10.1016/j.jsv.2011.01.007
16.
Liu
,
H. F.
, and
Li
,
Z. G.
,
2020
, “
An Improved Generalized Flexibility Matrix Approach for Structural Damage Detection
,”
Inverse Probl. Sci. Eng.
,
28
(
6
), pp.
877
893
.10.1080/17415977.2019.1683174
17.
Bandara
,
R. P.
,
Chan
,
T. H. T.
, and
Thambiratnam
,
D. P.
,
2014
, “
Structural Damage Detection Method Using Frequency Response Functions
,”
Struct. Control Health
,
13
(
4
), pp.
418
429
.10.1177/1475921714522847
18.
Ray
,
L. R.
, and
Tian
,
L.
,
1999
, “
Damage Detection in Smart Structures Through Sensitivity Enhancing Feedback Control
,”
J. Sound Vib.
,
227
(
5
), pp.
987
1002
.10.1006/jsvi.1999.2392
19.
Ray
,
L. R.
, and
Marini
,
S.
,
2000
, “
Optimization of Control Laws for Damage Detection in Smart Structures
,”
Proceedings of SPIE-the International Society for Optical Engineering
,
Newport Beach, CA
, Mar. 6, pp.
395
402
.
20.
Lew
,
J. S.
, and
Juang
,
J. N.
,
2002
, “
Structural Damage Detection Using Virtual Passive Controllers
,”
J. Guid. Control, Dyn.
,
25
(
3
), pp.
419
424
.10.2514/2.4918
21.
Koh
,
B. H.
, and
Ray
,
L. R.
,
2004
, “
Feedback Controller Design for Sensitivity-Based Damage Localization
,”
J. Sound Vib.
,
273
(
1–2
), pp.
317
335
.10.1016/S0022-460X(03)00541-8
22.
Koh
,
B. H.
, and
Ray
,
L. R.
,
2003
, “
Localization of Damage in Smart Structures Through Sensitivity Enhancing Feedback Control
,”
Mech. Syst. Signal Process.
,
17
(
4
), pp.
837
855
.10.1006/mssp.2003.1566
23.
Koh
,
B. H.
,
2003
, “
Damage Identification in Smart Structures Through Sensitivity Enhancing Control
,”
Ph.D. thesis
,
Dartmouth college
,
Hanover, NH
.https://www.proquest.com/openview/874700b866100e27ea9b6137d497d5f0/1?pqorigsite=gscholar&cbl=18750&diss=y
24.
Bernal
,
D.
,
2018
, “
Eigenvalue Sensitivity of Sampled Time Systems Operating in Closed Loop
,”
Mech. Syst. Signal Process.
,
105
, pp.
481
487
.10.1016/j.ymssp.2017.11.014
25.
Bernal
,
D.
,
2018
, “
State Observers in the Design of Eigenstructures for Enhanced Sensitivity
,”
Mech. Syst. Signal Process.
,
110
, pp.
122
129
.10.1016/j.ymssp.2018.03.034
26.
Bernal
,
D.
, and
Ulriksen
,
M. D.
,
2018
, “
Output Feedback in the Design of Eigenstructures for Enhanced Sensitivity
,”
Mech. Syst. Signal Process.
,
110
, pp.
22
30
.10.1016/j.ymssp.2018.04.032
27.
Bao
,
X. Y.
, and
Chen
,
L.
,
2012
, “
Recent Progress in Distributed Fiber Optic Sensors
,”
Sensors
,
12
(
7
), pp.
8601
8639
.10.3390/s120708601
28.
Barrias
,
A.
,
Casas
,
J. R.
, and
Villalba
,
S.
,
2016
, “
A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications
,”
Sensors
,
16
(
5
), p.
748
.10.3390/s16050748
29.
Jiang
,
H.
,
Wang
,
C.
,
Zhao
,
Y.
, and
Tang
,
R.
,
2023
, “
A Fast Wavelength Detection Method Based on OTDR and 1-DDCNN in Series Overlapping Spectra
,”
Opt. Fiber Technol.
,
80
, p.
103458
.10.1016/j.yofte.2023.103458
30.
Zhou
,
Z.
,
Liu
,
Y.
, and
Li
,
H.
,
2023
, “
A Method for Convergence Monitoring Considering the Flattening Effect in a Shield Tunnel With BOTDA Sensors
,”
Measurement
,
211
, p.
112611
.10.1016/j.measurement.2023.112611
31.
Zhao
,
M.
,
Yi
,
X. L.
, and
Zhang
,
J. R.
,
2021
, “
PPP-BOTDA Distributed Optical Fiber Sensing Technology and Its Application to the Baishuihe Landslide
,”
Front. Earth Sci.
,
9
, p.
660918
.10.3389/feart.2021.660918
32.
Dong
,
Y. K.
,
Chen
,
L.
, and
Bao
,
X. Y.
,
2012
, “
Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and in-Line EDFAs
,”
J. Lightwave Technol.
,
30
(
8
), pp.
1161
1167
.10.1109/JLT.2011.2170813
33.
Ba
,
D. X.
,
Wang
,
B. Z.
, and
Zhou
,
D. W.
,
2015
, “
Dynamic Distributed Brillouin Optical Fiber Sensing Based on Multi-Slope Analysis
,” 24th International Conference on Optical Fibre Sensors (
OFS
),
Curitiba, Brazil
, Sept. 28, p.
96344T
.10.1117/12.2194539
34.
Liu
,
Y.
, and
Zhang
,
S. Y.
,
2018
, “
Damage Localization of Beam Bridges Using Quasi-Static Strain Influence Lines Based on the BOTDA Technique
,”
Sensors
,
18
(
12
), p.
4446
.10.3390/s18124446
35.
Todd
,
M. D.
, and
Vohra
,
S. T.
,
1999
, “
Shear Deformation Correction to Transverse Shape Reconstruction From Distributed Strain Measurements
,”
J. Sound Vib.
,
225
(
3
), pp.
581
594
.10.1006/jsvi.1999.2176
You do not currently have access to this content.