Abstract

Fragility estimates in wind turbine towers have been investigated but the effect of damping on fragility has not been studied. While damping can often be small, it can come from different sources for a wind turbine. This paper demonstrates that even for small levels of equivalent viscous damping, a combination of sources can have a significant impact on the estimate of the fragility of a wind turbine in operational conditions. The widely studied 5 MW reference wind turbine is considered for this study. The fragility analysis is performed considering the tower fore-aft displacement and acceleration responses. The impact of different sources of damping on fragility is estimated and ranked to qualitatively understand the impact of damping on the lifetime performance of the tower and develop approximate estimates of their quantitative changes.

References

1.
Madariaga
,
A.
,
de Alegría
,
I. M.
,
Martín
,
J. L.
,
Eguía
,
P.
, and
Ceballos
,
S.
,
2012
, “
Current Facts About Offshore Wind Farms
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3105
3116
.10.1016/j.rser.2012.02.022
2.
Srbinovski
,
B.
,
Temko
,
A.
,
Leahy
,
P.
,
Pakrashi
,
V.
, and
Popovici
,
E.
,
2021
, “
Gaussian Mixture Models for Site-Specific Wind Turbine Power Curves
,”
Proc. Inst. Mech. Eng., Part A
,
235
(
3
), pp.
494
505
.10.1177/0957650920931729
4.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2006
, “
Non-Linear Dynamics of Wind Turbine Wings
,”
Int. J. Non-Linear Mech.
,
41
(
5
), pp.
629
643
.10.1016/j.ijnonlinmec.2006.01.003
5.
O'Leary
,
K.
,
Pakrashi
,
V.
, and
Kelliher
,
D.
,
2019
, “
Optimization of Composite Material Tower for Offshore Wind Turbine Structures
,”
Renewable Energy
,
140
, pp.
928
942
.10.1016/j.renene.2019.03.101
6.
Bossanyi
,
E. A.
,
2003
, “
Individual Blade Pitch Control for Load Reduction
,”
Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol.
,
6
(
2
), pp.
119
128
.10.1002/we.76
7.
Namik
,
H.
, and
Stol
,
K.
,
2014
, “
Individual Blade Pitch Control of a Spar-Buoy Floating Wind Turbine
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
214
223
.10.1109/TCST.2013.2251636
8.
Basu
,
B.
,
Staino
,
A.
, and
Basu
,
M.
,
2014
, “
Role of Flexible Alternating Current Transmission Systems Devices in Mitigating Grid Fault-Induced Vibration of Wind Turbines
,”
Wind Energy
,
17
(
7
), pp.
1017
1033
.10.1002/we.1616
9.
Fitzgerald
,
B.
,
Staino
,
A.
, and
Basu
,
B.
,
2019
, “
Wavelet-Based Individual Blade Pitch Control for Vibration Control of Wind Turbine Blades
,”
Struct. Control Health Monit.
,
26
(
1
), p.
e2284
.10.1002/stc.2284
10.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Structural Control of Floating Wind Turbines
,”
Mechatronics
,
21
(
4
), pp.
704
719
.10.1016/j.mechatronics.2010.11.007
11.
Mensah
,
A. F.
, and
Dueñas-Osorio
,
L.
,
2014
, “
Improved Reliability of Wind Turbine Towers With Tuned Liquid Column Dampers (TLCDs)
,”
Struct. Saf.
,
47
, pp.
78
86
.10.1016/j.strusafe.2013.08.004
12.
Caterino
,
N.
,
2015
, “
Semi-Active Control of a Wind Turbine Via Magnetorheological Dampers
,”
J. Sound Vib.
,
345
, pp.
1
17
.10.1016/j.jsv.2015.01.022
13.
Buckley
,
T.
,
Watson
,
P.
,
Cahill
,
P.
,
Jaksic
,
V.
, and
Pakrashi
,
V.
,
2018
, “
Mitigating the Structural Vibrations of Wind Turbines Using Tuned Liquid Column Damper Considering Soil Structure Interaction
,”
Renewable Energy
,
120
, pp.
322
341
.10.1016/j.renene.2017.12.090
14.
Fitzgerald
,
B.
,
McAuliffe
,
J.
,
Baisthakur
,
S.
, and
Sarkar
,
S.
,
2023
, “
Enhancing the Reliability of Floating Offshore Wind Turbine Towers Subjected to Misaligned Wind-Wave Loading Using Tuned Mass Damper Inerters (TMDIs)
,”
Renewable Energy
,
211
, pp.
522
538
.10.1016/j.renene.2023.04.097
15.
Sarkar
,
S.
, and
Fitzgerald
,
B.
,
2022
, “
Fluid Inerter for Optimal Vibration Control of Floating Offshore Wind Turbine Towers
,”
Eng. Struct.
,
266
, p.
114558
.10.1016/j.engstruct.2022.114558
16.
Staino
,
A.
,
Basu
,
B.
, and
Nielsen
,
S. R. K.
,
2012
, “
Actuator Control of Edgewise Vibrations in Wind Turbine Blades
,”
J. Sound Vib.
,
331
(
6
), pp.
1233
1256
.10.1016/j.jsv.2011.11.003
17.
Fitzgerald
,
B.
, and
Basu
,
B.
,
2020
, “
Vibration Control of Wind Turbines: Recent Advances and Emerging Trends
,”
Int. J. Sustainable Mater. Struct. Syst.
,
4
(
2–4
), pp.
347
372
.10.1504/IJSMSS.2020.109090
18.
Martinez-Luengo
,
M.
, and
Shafiee
,
M.
,
2019
, “
Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures
,”
Energies
,
12
(
6
), p.
1176
.10.3390/en12061176
19.
Asgarpour
,
M.
, and
Sørensen
,
J.
,
2018
, “
Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms
,”
Energies
,
11
(
2
), p.
300
.10.3390/en11020300
20.
Ciang
,
C. C.
,
Lee
,
J.-R.
, and
Bang
,
H.-J.
,
2008
, “
Structural Health Monitoring for a Wind Turbine System: A Review of Damage Detection Methods
,”
Meas. Sci. Technol.
,
19
(
12
), p.
122001
.10.1088/0957-0233/19/12/122001
21.
Ziegler
,
L.
,
Gonzalez
,
E.
,
Rubert
,
T.
,
Smolka
,
U.
, and
Melero
,
J. J.
,
2018
, “
Lifetime Extension of Onshore Wind Turbines: A Review Covering Germany, Spain, Denmark, and the UK
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1261
1271
.10.1016/j.rser.2017.09.100
22.
Topham
,
E.
, and
McMillan
,
D.
,
2017
, “
Sustainable Decommissioning of an Offshore Wind Farm
,”
Renewable Energy
,
102
, pp.
470
480
.10.1016/j.renene.2016.10.066
23.
Tchakoua
,
P.
,
Wamkeue
,
R.
,
Ouhrouche
,
M.
,
Slaoui-Hasnaoui
,
F.
,
Tameghe
,
T.
, and
Ekemb
,
G.
,
2014
, “
Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges
,”
Energies
,
7
(
4
), pp.
2595
2630
.10.3390/en7042595
24.
Herring
,
R.
,
Dyer
,
K.
,
Martin
,
F.
, and
Ward
,
C.
,
2019
, “
The Increasing Importance of Leading Edge Erosion and a Review of Existing Protection Solutions
,”
Renewable Sustainable Energy Rev.
,
115
, p.
109382
.10.1016/j.rser.2019.109382
25.
Lacalle
,
R.
,
Cicero
,
S.
,
Alvarez
,
J. A.
,
Cicero
,
R.
, and
Madrazo
,
V.
,
2011
, “
On the Analysis of the Causes of Cracking in a Wind Tower
,”
Eng. Failure Anal.
,
18
(
7
), pp.
1698
1710
.10.1016/j.engfailanal.2011.02.012
26.
Radičević
,
B. M.
,
Savić
,
M. S.
,
Madsen
,
S. F.
, and
Badea
,
I.
,
2012
, “
Impact of Wind Turbine Blade Rotation on the Lightning Strike Incidence—A Theoretical and Experimental Study Using a Reduced-Size Model
,”
Energy
,
45
(
1
), pp.
644
654
.10.1016/j.energy.2012.07.032
27.
Alshannaq
,
A.
,
Scott
,
D.
,
Bank
,
L.
,
Bermek
,
M.
, and
Gentry
,
R.
,
2019
, “
Structural Re-Use of De-Commissioned Wind Turbine Blades in Civil Engineering Applications
,”
Proceedings, American Society for Composites 2019 Annual Meeting,
Atlanta, GA, Sept. 23–25.10.12783/asc34/31317
28.
Baisthakur
,
S.
, and
Fitzgerald
,
B.
,
2022
, “
A Study of Wind-Wave Misalignment for the Irish Coastline and Its Effect on the Wind Turbine Response
,”
Civil Engineering Research in Ireland (CERI) and 598 Irish Transportation Research Network (ITRN) Conference
, Dublin, Ireland, Aug. 25–26, p.
531
.http://hdl.handle.net/2262/101182
29.
Waldron
,
S.
,
Smith
,
J.
,
Taylor
,
K.
,
McGinnes
,
C.
,
Roberts
,
N.
, and
McCallum
,
D.
,
2018
, “
Repowering Onshore Wind Farms: A Technical and Environmental Exploration of Foundation Reuse
,”
Carbon Landscape and Drainage Knowledge Exchange Network-Led Report, Construction Scotland Innovation Centre
, Glasgow, Scotland, UK, Report.10.17605/OSF.IO/SCZDE
30.
Ruane
,
K.
,
Zhang
,
Z.
,
Nagle
,
A.
,
Huynh
,
A.
,
Alshannaq
,
A.
,
McDonald
,
A.
,
Leahy
,
P.
,
Soutsos
,
M.
,
McKinley
,
J.
,
Gentry
,
R.
, and
Bank
,
L.
,
2022
, “
Material and Structural Characterization of a Wind Turbine Blade for Use as a Bridge Girder
,”
Transp. Res. Rec.
,
2676
(
8
), pp.
354
362
.10.1177/03611981221083619
31.
Quilligan
,
A.
,
O'Connor
,
A.
, and
Pakrashi
,
V.
,
2012
, “
Fragility Analysis of Steel and Concrete Wind Turbine Towers
,”
Eng. Struct.
,
36
, pp.
270
282
.10.1016/j.engstruct.2011.12.013
32.
Fitzgerald
,
B.
,
Sarkar
,
S.
, and
Staino
,
A.
,
2018
, “
Improved Reliability of Wind Turbine Towers With Active Tuned Mass Dampers (ATMDs)
,”
J. Sound Vib.
,
419
, pp.
103
122
.10.1016/j.jsv.2017.12.026
33.
Slavič
,
J.
,
Simonovski
,
I.
, and
Boltežar
,
M.
,
2003
, “
Damping Identification Using a Continuous Wavelet Transform: Application to Real Data
,”
J. Sound Vib.
,
262
(
2
), pp.
291
307
.10.1016/S0022-460X(02)01032-5
34.
Vathakkattil Joseph
,
G.
,
Hao
,
G.
, and
Pakrashi
,
V.
,
2019
, “
Fragility Analysis Using Vibration Energy Harvesters
,”
Eur. Phys. J.: Spec. Top.
,
228
(
7
), pp.
1625
1633
.10.1140/epjst/e2019-800176-4
35.
Adhikari
,
S.
, and
Woodhouse
,
J.
,
2001
, “
Identification of Damping: Part 1, Viscous Damping
,”
J. Sound Vib.
,
243
(
1
), pp.
43
61
.10.1006/jsvi.2000.3391
36.
Adhikari
,
S.
, and
Woodhouse
,
J.
,
2001
, “
Identification of Damping: Part 2, Non-Viscous Damping
,”
J. Sound Vib.
,
243
(
1
), pp.
63
88
.10.1006/jsvi.2000.3392
37.
Adhikari
,
S.
,
2002
, “
Lancaster's Method of Damping Identification Revisited
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
617
627
.10.1115/1.1500742
38.
Jaksic
,
V.
, and
Pakrashi
,
V.
,
2013
, “
Robust Skewness-Kurtosis Descriptor for Damping Calibration From Frequency Response
,”
J. Aerosp. Eng.
,
26
(
4
), pp.
887
893
.10.1061/(ASCE)AS.1943-5525.0000183
39.
Méndez
,
V.
,
Horsthemke
,
W.
,
Mestres
,
P.
, and
Campos
,
D.
,
2011
, “
Instabilities of the Harmonic Oscillator With Fluctuating Damping
,”
Phys. Rev. E
,
84
(
4
), p.
041137
.10.1103/PhysRevE.84.041137
40.
Dueñas-Osorio
,
L.
, and
Basu
,
B.
,
2008
, “
Unavailability of Wind Turbines Due to Wind Induced Accelerations
,”
Eng. Struct.
,
30
(
4
), pp.
885
893
.10.1016/j.engstruct.2007.05.015
41.
Sørensen
,
J. D.
, and
Toft
,
H. S.
,
2010
, “
Probabilistic Design of Wind Turbines
,”
Energies
,
3
(
2
), pp.
241
257
.10.3390/en3020241
42.
Bhattacharya
,
S.
,
Lombardi
,
D.
, and
Muir Wood
,
D.
,
2011
, “
Similitude Relation Ships for Physical Modelling of Monopile-Supported Offshore Wind Turbines
,”
Int. J. Phys. Modell. Geotech.
,
11
(
2
), pp.
58
68
.10.1680/ijpmg.2011.11.2.58
43.
Bhattacharya
,
S.
,
Lombardi
,
D.
,
Amani
,
S.
,
Aleem
,
M.
,
Prakhya
,
G.
,
Adhikari
,
S.
,
Aliyu
,
A.
, et al.,
2021
, “
Physical Modelling of Offshore Wind Turbine Foundations for TRL (Technology Readiness Level) Studies
,”
J. Mar. Sci. Eng.
,
9
(
6
), p.
589
.10.3390/jmse9060589
44.
Bhattacharya
,
S.
, and
Adhikari
,
S.
,
2011
, “
Experimental Validation of Soil–Structure Interaction of Offshore Wind Turbines
,”
Soil Dyn. Earthquake Eng.
,
31
(
5–6
), pp.
805
816
.10.1016/j.soildyn.2011.01.004
45.
Jaksic
,
V.
,
O'Shea
,
R.
,
Cahill
,
P.
,
Murphy
,
J.
,
Mandic
,
D. P.
, and
Pakrashi
,
V.
,
2015
, “
Dynamic Response Signatures of a Scaled Model Platform for Floating Wind Turbines in an Ocean Wave Basin
,”
Philos. Trans. R. Soc., A
,
373
(
2035
), p.
20140078
.10.1098/rsta.2014.0078
46.
Casaburo
,
A.
,
Petrone
,
G.
,
Franco
,
F.
, and
De Rosa
,
S.
,
2019
, “
A Review of Similitude Methods for Structural Engineering
,”
ASME Appl. Mech. Rev.
,
71
(
3
), p.
030802
.10.1115/1.4043787
47.
Germanischer Lloyd Windenergie,
2005
, “
Overall Damping for Piled Offshore Support Structures
,”
Guideline for the Certification of Offshore Wind Turbines
, Germanischer Lloyd Industrial Services GmbH, Hamburg, Germany.
48.
Carswell
,
W.
,
Johansson
,
J.
,
Løvholt
,
F.
,
Arwade
,
S. R.
,
Madshus
,
C.
,
DeGroot
,
D. J.
, and
Myers
,
A. T.
,
2015
, “
Foundation Damping and the Dynamics of Offshore Wind Turbine Monopiles
,”
Renewable Energy
,
80
, pp.
724
736
.10.1016/j.renene.2015.02.058
49.
Devriendt
,
C.
,
Jordaens
,
P. J.
,
De Sitter
,
G.
, and
Guillaume
,
P.
,
2013
, “
Damping Estimation of an Offshore Wind Turbine on a Monopile Foundation
,”
IET Renewable Power Gener.
,
7
(
4
), pp.
401
412
.10.1049/iet-rpg.2012.0276
50.
Malekjafarian
,
A.
,
Jalilvand
,
S.
,
Doherty
,
P.
, and
Igoe
,
D.
,
2021
, “
Foundation Damping for Monopile Supported Offshore Wind Turbines: A Review
,”
Mar. Struct.
,
77
, p.
102937
.10.1016/j.marstruc.2021.102937
51.
Rasmussen
,
F.
,
Petersen
,
J. T.
, and
Madsen
,
H. A.
,
1999
, “
Dynamic Stall and Aerodynamic Damping
,”
Journal of Solar Energy Engineering
, 121(3), pp.
150
155
.10.1115/1.2888426
52.
Hansen
,
M. H.
,
2004
, “
Aeroelastic Stability Analysis of Wind Turbines Using an Eigenvalue Approach
,”
Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol.
,
7
(
2
), pp.
133
143
.10.1002/we.116
53.
Valamanesh
,
V.
, and
Myers
,
A. T.
,
2014
, “
Aerodynamic Damping and Seismic Response of Horizontal Axis Wind Turbine Towers
,”
J. Struct. Eng.
,
140
(
11
), p.
04014090
.10.1061/(ASCE)ST.1943-541X.0001018
54.
Chen
,
B.
,
Zhang
,
Z.
,
Hua
,
X.
,
Basu
,
B.
, and
Nielsen
,
S. R. K.
,
2017
, “
Identification of Aerodynamic Damping in Wind Turbines Using Time-Frequency Analysis
,”
Mech. Syst. Signal Process.
,
91
, pp.
198
214
.10.1016/j.ymssp.2017.01.010
55.
Chen
,
B.
,
Basu
,
B.
,
Hua
,
X.
,
Feng
,
Z.
,
Zhang
,
Z.
,
Chen
,
Z.
, and
Nielsen
,
S. R. K.
,
2021
, “
Online DWT Algorithm for Identification of Aerodynamic Damping in Wind Turbines
,”
Mech. Syst. Signal Process.
,
152
, p.
107437
.10.1016/j.ymssp.2020.107437
56.
Thomsen
,
K.
,
Petersen
,
J. T.
,
Nim
,
E.
,
Øye
,
S.
, and
Petersen
,
B.
,
2000
, “
A Method for Determination of Damping for Edgewise Blade Vibrations
,”
Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol.
,
3
(
4
), pp.
233
246
.10.1002/we.42
57.
Hansen
,
M. H.
,
Thomsen
,
K.
,
Fuglsang
,
P.
, and
Knudsen
,
T.
,
2006
, “
Two Methods for Estimating Aeroelastic Damping of Operational Wind Turbine Modes From Experiments
,”
Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol.
,
9
(
1–2
), pp.
179
191
.10.1002/we.187
58.
Kareem
,
A.
, and
Gurley
,
K.
,
1996
, “
Damping in Structures: Its Evaluation and Treatment of Uncertainty
,”
J. Wind Eng. Ind. Aerodyn.
,
59
(
2–3
), pp.
131
157
.10.1016/0167-6105(96)00004-9
59.
Varghese
,
R.
,
Pakrashi
,
V.
, and
Bhattacharya
,
S.
,
2022
, “
A Compendium of for Mulae for Natural Frequencies of Offshore Wind Turbine Structures
,”
Energies
,
15
(
8
), p.
2967
.10.3390/en15082967
60.
Prendergast
,
L. J.
,
Gavin
,
K.
, and
Doherty
,
P.
,
2015
, “
An Investigation Into the Effect of Scour on the Natural Frequency of an Offshore Wind Turbine
,”
Ocean Eng.
,
101
, pp.
1
11
.10.1016/j.oceaneng.2015.04.017
61.
Otter
,
A.
,
Murphy
,
J.
,
Pakrashi
,
V.
,
Robertson
,
A.
, and
Desmond
,
C.
,
2022
, “
A Review of Modelling Techniques for Floating Offshore Wind Turbines
,”
Wind Energy
,
25
(
5
), pp.
831
857
.10.1002/we.2701
62.
Benreguig
,
P.
,
Kelly
,
J.
,
Pakrashi
,
V.
, and
Murphy
,
J.
,
2019
, “
Wave-to-Wire Model Development and Validation for Two OWC Type Wave Energy Converters
,”
Energies
,
12
(
20
), p.
3977
.10.3390/en12203977
63.
Oliveira-Pinto
,
S.
, and
Stokkermans
,
J.
,
2020
, “
Assessment of the Potential of Different Floating Solar Technologies—Overview and Analysis of Different Case Studies
,”
Energy Convers. Manage.
,
211
, p.
112747
.10.1016/j.enconman.2020.112747
64.
Rebelo
,
C.
, and
Baniotopoulos
,
L.
,
2022
, “Modular Energy Islands for Sustainability and Resilience–Cost Action: CA20109 ‘MODENERLANDS,’” Modenerlands,
Coordinating Engineering for Sustainability and Resilience
, Irbid, Jordan, p.
30
.https://www.just.edu.jo/cesare22/SiteAssets/Pages/accepted_abstracts/169_Paper.pdf
65.
Adhikari
,
S.
, and
Bhattacharya
,
S.
,
2021
, “
A General Frequency Adaptive Framework for Damped Response Analysis of Wind Turbines
,”
Soil Dyn. Earthquake Eng.
,
143
, p.
106605
.10.1016/j.soildyn.2021.106605
66.
Morison
,
J. R.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Technol.
,
2
(
5
), pp.
149
154
.10.2118/950149-G
67.
Ning
,
S. A.
,
2014
, “
A Simple Solution Method for the Blade Element Momentum Equations With Guaranteed Convergence
,”
Wind Energy
,
17
(
9
), pp.
1327
1345
.10.1002/we.1636
68.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
, “
AeroDyn Theory Manual
,”
National Renewable Energy Laboratory
,
Golden, CO
, Technical Report No. NREL/TP-500-36881.
69.
Jonkman
,
J. M.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory
,
Golden, CO
, Technical Report No. NREL/TP-500-38060.
70.
Jonkman
,
B. J.
,
2009
, “
TurbSim User's Guide: Version 1.50
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
, Technical Report No. NREL/TP-500-39797.
71.
The MathWorks,
2022
,
MATLAB Version: 9.13.0 (R2022b)
,
The MathWorks
,
Natick, MA
.
72.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab ODE Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.10.1137/S1064827594276424
73.
Jonkman
,
J.
,
2013
, “
The New Modularization Framework for the FAST Wind Turbine CAE Tool
,”
AIAA
Paper No. 2013–0202.10.2514/6.2013-202
74.
Baker
,
J. W.
,
2015
, “
Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis
,”
Earthquake Spectra
,
31
(
1
), pp.
579
599
.10.1193/021113EQS025M
You do not currently have access to this content.