Abstract

Wind energy harvesters are usually designed to operate in the low wind speed range. They rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce energy through limit-cycle vibration. Energy conversion and storage from the wind flow are enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore its efficiency in nonideal wind conditions. The thunderstorm flow model accounts for both nonstationary turbulence and slowly varying mean wind speed, replicating thunderstorm's intensification and decay stages. This paper evolves from a recent study to examine stochastic stability. More specifically, the output power is derived as a random process that is found numerically. Various thunderstorm features and variable apparatus configurations are evaluated. Numerical investigations confirm the detrimental effect of nonideal, thunderstorms on harvester performance with, on average, an adverse increment of operational speed (about +30%). Besides nonlinear damping, the “benign” flutter-prone effect is controlled by the square value of the flapping angle. Since flapping amplitudes are moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the nonstationary outflow and aeroelastic load features. Finally, efficiency is carefully investigated by quantification of output power and “quality factor.”

References

1.
Priya
,
S.
, and
Inman
,
D. J.
,
2009
,
Energy Harvesting Technologies
,
Springer Science
,
New York
.
2.
Matsumoto
,
M.
,
Mizuno
,
K.
,
Okubo
,
K.
, and
Ito
,
Y.
,
2006
, “
Fundamental Study on the Efficiency of Power Generation System by Use of the Flutter Instability
,”
ASME
Paper No. PVP2006-ICPVT11-93773.
3.
Pigolotti
,
L.
,
Mannini
,
C.
,
Bartoli
,
G.
, and
Thiele
,
K.
,
2017
, “
Critical and Post-Critical Behaviour of Two-Degree-of-Freedom Flutter-Based Generators
,”
J. Sound Vib.
,
404
, pp.
116
140
.10.1016/j.jsv.2017.05.024
4.
Singh
,
K.
,
Michelin
,
S.
, and
de Langre
,
E.
,
2012
, “
Energy Harvesting From Axial Fluid-Elastic Instabilities of a Cylinder
,”
J. Fluids Struct.
,
30
, pp.
159
172
.10.1016/j.jfluidstructs.2012.01.008
5.
Eugeni
,
M.
,
Elahi
,
H.
,
Fune
,
F.
,
Lampani
,
L.
,
Mastroddi
,
F.
,
Romano
,
G. P.
, and
Gaudenzi
,
P.
,
2020
, “
Numerical and Experimental Investigation of Piezoelectric Energy Harvester Based on Flag-Flutter
,”
Aerosp. Sci. Technol.
,
97
, p.
105634
.10.1016/j.ast.2019.105634
6.
Gkoumas
,
K.
,
Petrini
,
F.
, and
Bontempi
,
F.
,
2017
, “
Piezoelectric Vibration Energy Harvesting From Airflow in HVAC (Heating Ventilation and Air Conditioning) Systems
,”
Proc. Eng.
,
199
, pp.
3444
3449
.10.1016/j.proeng.2017.09.496
7.
Petrini
,
F.
, and
Gkoumas
,
K.
,
2018
, “
Piezoelectric Energy Harvesting From Vortex Shedding and Galloping Induced Vibrations Inside HVAC Ducts
,”
Energy Build.
,
158
, pp.
371
383
.10.1016/j.enbuild.2017.09.099
8.
Meshki
,
M. M.
,
Nobari
,
A. S.
, and
Sadr
,
M. H.
,
2022
, “
A Study on Nonlinear, Parametric Aeroelastic Energy Harvesters Under Oscillatory Airflow
,”
J. Vib. Control
,
28
(
1–2
), pp.
192
202
.10.1177/1077546320974477
9.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE Vortex Induced Vibration Aquatic Clean Energy: A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.10.1115/1.2957913
10.
Le
,
H.
,
Kwon
,
S.-D.
, and
Law
,
K.
,
2023
, “
Hybrid Energy Harvesting From Wind and Bridge Vibrations
,”
Proceedings of 16th International Conference on Wind Engineering (ICWE16)
, Florence, Italy, Aug. 27–31.
11.
Caracoglia
,
L.
,
2018
, “
Modeling the Coupled Electro-Mechanical Response of a Torsional-Flutter-Based Wind Harvester With a Focus on Energy Efficiency Examination
,”
J. Wind Eng. Ind. Aerodyn.
,
174
, pp.
437
450
.10.1016/j.jweia.2017.10.017
12.
Ahmadi
,
G.
,
1979
, “
An Oscillatory Wind Energy Convertor
,”
Wind Eng.
,
3
, pp.
207
215
.https://www.jstor.org/stable/43749142
13.
Roohi
,
R.
,
Hosseini
,
R.
, and
Ahmadi
,
G.
,
2023
, “
Parametric Study of an H-Section Oscillatory Wind Energy Converter
,”
J. Ocean Eng.
,
270
, p.
113652
.10.1016/j.oceaneng.2023.113652
14.
Kwon
,
S.-D.
,
Park
,
J.
, and
Law
,
K.
,
2013
, “
Electromagnetic Energy Harvester With Repulsively Stacked Multilayer Magnets for Low Frequency Vibrations
,”
Smart Mater. Struct.
,
22
(
5
), p.
055007
.10.1088/0964-1726/22/5/055007
15.
Solari
,
G.
,
De Gaetano
,
P.
, and
Repetto
,
M. P.
,
2015
, “
Thunderstorm Response Spectrum: Fundamentals and Case Study
,”
J. Wind Eng. Ind. Aerodyn.
,
143
, pp.
62
77
.10.1016/j.jweia.2015.04.009
16.
Solari
,
G.
,
2016
, “
Thunderstorm Response Spectrum Technique: Theory and Applications
,”
Eng. Struct.
,
108
, pp.
28
46
.10.1016/j.engstruct.2015.11.012
17.
Solari
,
G.
, and
De Gaetano
,
P.
,
2018
, “
Dynamic Response of Structures to Thunderstorm Outflows: Response Spectrum Technique versus Time-Domain Analysis
,”
Eng. Struct.
,
176
, pp.
188
207
.10.1016/j.engstruct.2018.08.062
18.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
19.
Caracoglia
,
L.
,
2024
, “
Stochastic Performance of a Torsional-Flutter Harvester in Non-Stationary, Turbulent Thunderstorm Outflows
,”
J. Fluids Struct.
,
124
, p.
104050
.10.1016/j.jfluidstructs.2023.104050
20.
Pandey
,
M.
,
Rand
,
R.
, and
Zehnder
,
A.
,
2007
, “
Perturbation Analysis of Entrainment in a Micromechanical Limit Cycle Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
7
), pp.
1291
1301
.10.1016/j.cnsns.2006.01.017
21.
Belhaq
,
M.
,
Ghouli
,
Z.
, and
Hamdi
,
M.
,
2018
, “
Energy Harvesting in a Mathieu-Van Der Pol-Duffing MEMS Device Using Time Delay
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2537
2546
.10.1007/s11071-018-4508-3
22.
Liu
,
D.
,
Xu
,
S.
, and
Ma
,
J.
,
2023
, “
Bayesian System Identification and Chaotic Prediction From Data for Stochastic Mathieu-Van Der Pol-Duffing Energy Harvester
,”
Theor. Appl. Mech. Lett.
,
13
(
2
), p.
100412
.10.1016/j.taml.2022.100412
23.
Grigoriu
,
M.
,
2002
,
Stochastic Calculus. Applications in Science and Engineering
,
Birkhäuser
,
Boston, MA
.
24.
Xie
,
W.-C.
,
2005
, “
Monte Carlo Simulation of Moment Lyapunov Exponents
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
269
275
.10.1115/1.1839592
25.
Caracoglia
,
L.
,
2023
, “
Stochastic Stability of a Torsional-Flutter Energy Harvester in Thunderstorm-Like Winds: Duffing vs. Hybrid Duffing – Van Der Pol Restoring Force Mechanisms
,”
ASME
Paper No. IMECE2023-116381.10.1115/IMECE2023-116381
26.
Kwon
,
D. K.
, and
Kareem
,
A.
,
2009
, “
Gust-Front Factor: New Framework for Wind Load Effects on Structures
,”
J. Struct. Eng.-ASCE
,
135
(
6
), pp.
717
732
.10.1061/(ASCE)0733-9445(2009)135:6(717)
27.
Kwon
,
D. K.
,
Kareem
,
A.
, and
Butler
,
K.
,
2012
, “
Gust-Front Loading Effects on Wind Turbine Tower Systems
,”
J. Wind Eng. Ind. Aerodyn.
,
104–106
, pp.
109
115
.10.1016/j.jweia.2012.03.030
28.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2009
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer Science+Business Media, B.V
.,
Dordrecht, NL
.
29.
Cveticanin
,
L.
, and
Maretic
,
R.
,
1994
, “
A Van Der Pol Absorber for Rotor Vibrations
,”
J. Sound Vib.
,
173
(
2
), pp.
145
155
.10.1006/jsvi.1994.1223
30.
Fujita
,
T. T.
,
1985
,
The Downburst: Microburst and Macroburst
,
University of Chicago
,
Chicago, IL
.
31.
Fujita
,
T. T.
,
1986
,
DFW Microburst on August 2, 1985
,
University of Chicago
,
Chicago, IL
.
32.
Wilson
,
J. W.
,
Roberts
,
R. D.
,
Kessinger
,
C.
, and
McCarthy
,
J.
,
1984
, “
Microburst Wind Structures and Evaluation of Doppler Radar for Airport Wind Shear Detection
,”
J. Appl. Meteorol. Climatol.
,
23
(
6
), pp.
898
915
.10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2
33.
Hjelmfelt
,
M. R.
,
1988
, “
Structure and Life Cycle of Microburst Outflows Observed in Colorado
,”
J. Appl. Meteorol. Climatol.
,
27
(
8
), pp.
900
927
.10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
34.
Oseguera
,
R. M.
, and
Bowles
,
R. L.
,
1988
, “
A Simple, Analytic 3-D Downburst Model Based on Boundary Layer Stagnation Flow
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No.
NASA-TM-100632
.https://www.semanticscholar.org/paper/Asimple%2C-analytic-3-dimensional-downburst-model-on-Oseguera-Bowles/e566c12345385e4c3ac6aff1c4d18d3262bb3505
35.
Solari
,
G.
,
2015
, “
Characteristics of Thunderstorms Relevant to the Wind Loading of Structures
,”
Wind Struct.
,
20
(
6
), pp.
763
791
.10.12989/was.2015.20.6.763
36.
Burlando
,
M.
,
Romanić
,
D.
,
Solari
,
G.
,
Hangan
,
H.
, and
Zhang
,
S.
,
2017
, “
Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012
,”
Mon. Weather Rev.
,
145
, pp.
3507
3527
.10.1175/MWR-D-17-0018.1
37.
Romanić
,
D.
,
Nicolini
,
E.
,
Hangan
,
H.
,
Burlando
,
M.
, and
Solari
,
G.
,
2020
, “
A Novel Approach to Scaling Experimentally Produced Downburst-Like Impinging Jet Outflows
,”
J. Wind Eng. Ind. Aerodyn.
,
196
, p.
104025
.10.1016/j.jweia.2019.104025
38.
Jubayer
,
C.
,
Elatar
,
A.
, and
Hangan
,
H.
,
2016
, “
Pressure Distributions on a Low-Rise Building in a Laboratory Simulated Downburst
,” Proceedings of 8th International Colloquium on Bluff Body Aerodynamics and Applications (
BBAA VIII
), Boston, MA, June 7–11.https://www.researchgate.net/publication/303921057_Pressure_distributions_on_a_lowrise_building_in_a_laboratory_simulated_downburst
39.
Hangan
,
H.
,
Romanić
,
D.
, and
Jubayer
,
C.
,
2019
, “
Three-Dimensional, Non-Stationary and Non-Gaussian (3D-NS-NG) Wind Fields and Their Implications to Wind-Structure Interaction Problems
,”
J. Fluids Struct.
,
91
, p.
102583
.10.1016/j.jfluidstructs.2019.01.024
40.
Chay
,
M. T.
,
Albermani
,
F.
, and
Wilson
,
R.
,
2006
, “
Numerical and Analytical Simulation of Downburst Wind Loads
,”
Eng. Struct.
,
28
(
2
), pp.
240
254
.10.1016/j.engstruct.2005.07.007
41.
Le
,
T.-H. L.
, and
Caracoglia
,
L.
,
2017
, “
Computer-Based Model for the Transient Dynamics of a Tall Building During Digitally Simulated Andrews AFB Thunderstorm
,”
Comput. Struct.
,
193
, pp.
44
72
.10.1016/j.compstruc.2017.07.019
42.
Chen
,
X.
,
2008
, “
Analysis of Alongwind Tall Building Response to Transient Nonstationary Winds
,”
J. Struct. Eng.-ASCE
,
134
(
5
), pp.
782
791
.10.1061/(ASCE)0733-9445(2008)134:5(782)
43.
Caracoglia
,
L.
,
2018
, “
Unified Stochastic Dynamic and Damage Cost Model for the Structural Analysis of Tall Buildings in Thunderstorm-Like Winds
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
,
4
(
4
), p.
04018043
.10.1061/AJRUA6.0000999
44.
Reed
,
D. A.
, and
Scanlan
,
R. H.
,
1984
, “
Autoregressive Representation of Longitudinal, Lateral, and Vertical Turbulence Spectra
,”
J. Wind Eng. Ind. Aerodyn.
,
17
(
2
), pp.
199
214
.10.1016/0167-6105(84)90056-4
45.
Bartoli
,
G.
, and
Spinelli
,
P.
,
1993
, “
The Stochastic Differential Calculus for the Determination of Structural Response Under Wind
,”
J. Wind Eng. Ind. Aerodyn.
,
48
(
2–3
), pp.
175
188
.10.1016/0167-6105(93)90135-B
46.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
,
1955
,
Aeroelasticity
,
Dover Publications Inc
.,
Mineola, NY
.
47.
Wagner
,
H.
,
1925
, “
Über Die Entstehung Des Dynamischen Auftriebes Von Tragflügeln (in German)
,”
ZAMM - Z. Für Angew. Math. Mech.
,
5
, pp.
17
35
.10.1002/zamm.19250050103
48.
Jones
,
R. T.
,
1939
,
The Unsteady Lift of a Finite Wing
(Technical Note 682),
National Advisory Committee for Aeronautics
,
Washington, DC
.
49.
Argentina
,
M.
, and
Mahadevan
,
L.
,
2005
, “
Fluid-Flow-Induced Flutter of a Flag
,”
Proc. Natl. Acad. Sci.
,
102
(
6
), pp.
1829
1834
.10.1073/pnas.0408383102
50.
Lin
,
Y.-K.
, and
Cai
,
G.-Q.
,
1995
,
Probabilistic Structural Dynamics
,
McGraw-Hill
,
New York
.
51.
Kloeden
,
P. E.
,
Platen
,
E.
, and
Schurz
,
H.
,
1994
,
Numerical Solution of Stochastic Differential Equations Through Computer Experiments
,
Springer-Verlag
,
Berlin-Heidelberg, Germany
.
52.
Itô
,
K.
,
1951
,
On Stochastic Differential Equations
(Vol. 4 of Memoirs of the American Mathematical Society),
American Mathematical Society
,
Providence, Rhode Island
.
53.
Wong
,
E.
, and
Zakai
,
M.
,
1965
, “
On the Relation Between Ordinary and Stochastic Differential Equations
,”
Int. J. Eng. Sci.
,
3
(
2
), pp.
213
229
.10.1016/0020-7225(65)90045-5
54.
Xie
,
W.-C.
,
2006
,
Dynamic Stability of Structures
,
Cambridge University Press
,
New York
.
55.
Náprstek
,
J.
,
2001
, “
Stability Domains of Wind-Excited Random Nonlinear Systems Through Lyapunov Function
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
14–15
), pp.
1499
1512
.10.1016/S0167-6105(01)00127-1
56.
Pospíšil
,
S.
,
Náprstek
,
J.
, and
Hračov
,
S.
,
2006
, “
Stability Domains in Flow-Structure Interaction and Influence of Random Noises
,”
J. Wind Eng. Ind. Aerodyn.
,
94
(
11
), pp.
883
893
.10.1016/j.jweia.2006.06.009
57.
Náprstek
,
J.
, and
Pospíšil
,
S.
,
2012
, “
Response Types and General Stability Conditions of Linear Aeroelastic System With Two Degrees-of-Freedom
,”
J. Wind Eng. Ind. Aerodyn.
,
111
, pp.
1
13
.10.1016/j.jweia.2012.08.002
58.
Náprstek
,
J.
,
Pospíšil
,
S.
, and
Yau
,
J.-D.
,
2015
, “
Stability of Two-Degree-of-Freedom Aeroelastic Models With Frequency and Time Variable Parametric Self-Induced Forces
,”
J. Fluids Struct.
,
57
, pp.
91
107
.10.1016/j.jfluidstructs.2015.05.010
59.
Davenport
,
A. G.
,
1964
, “
Note on the Distribution of the Largest Value of a Random Function With Application to Gust Loading
,”
Proc. Inst. Civ. Eng.
,
28
(
2
), pp.
187
196
.10.1680/iicep.1964.10112
60.
Chen
,
X.
,
2014
, “
Extreme Value Distribution and Peak Factor of Crosswind Response of Flexible Structures With Nonlinear Aeroelastic Effect
,”
J. Struct. Eng.-ASCE
,
140
(
12
), p.
04014091
.10.1061/(ASCE)ST.1943-541X.0001017
61.
Roncallo
,
L.
, and
Tubino
,
F.
,
2023
, “
Thunderstorm Gust Response Factor: A Closed-Form Solution
,”
J. Wind Eng. Ind. Aerodyn.
,
240
, p.
105487
.10.1016/j.jweia.2023.105487
62.
El-Hami
,
M.
,
Glynne-Jones
,
P.
,
White
,
N.
,
Hill
,
M.
,
Beeby
,
S.
,
James
,
E.
,
Brown
,
A.
, and
Ross
,
J.
,
2001
, “
Design and Fabrication of a New Vibration-Based Electromechanical Power Generator
,”
Sens. Actuators, A
,
92
(
1
), pp.
335
342
.10.1016/S0924-4247(01)00569-6
63.
Beeby
,
S.
,
Wang
,
L.
,
Zhu
,
D.
,
Weddell
,
A.
,
Merrett
,
G.
,
Stark
,
B.
,
Szarka
,
G.
, and
Al-Hashimi
,
B.
,
2013
, “
A Comparison of Power Output From Linear and Nonlinear Kinetic Energy Harvesters Using Real Vibration Data
,”
Smart Mater. Struct.
,
22
(
7
), p.
075022
.10.1088/0964-1726/22/7/075022
64.
Dompierre
,
A.
,
Vengallatore
,
S.
, and
Fréchette
,
L. G.
,
2019
, “
Achieving High Quality Factor Without Vacuum Packaging by High Density Proof Mass Integration in Vibration Energy Harvesters
,”
J. Microelectromech. Syst.-IEEE
,
28
(
3
), pp.
558
568
.10.1109/JMEMS.2019.2910228
65.
Jacobsen
,
L. S.
,
1930
, “
Steady Forced Vibration as Influenced by Damping: An Approximate Solution of the Steady Forced Vibration of a System of One Degree of Freedom Under the Influence of Various Types of Damping
,”
ASME Trans. Am. Soc. Mech. Eng.
,
52
(
2
), pp.
169
178
.10.1115/1.4057368
66.
van Kuik
,
G. A.
,
2007
, “
The Lanchester-Betz-Joukowsky Limit
,”
Wind Energy
,
10
(
3
), pp.
289
291
.10.1002/we.218
67.
Dunn
,
P.
, and
Dugundji
,
J.
,
1992
, “
Nonlinear Stall Flutter and Divergence Analysis of Cantilevered Graphite/Epoxy Wings
,”
AIAA J.
,
30
(
1
), pp.
153
162
.10.2514/3.10895
You do not currently have access to this content.