Abstract

The demand of steam in process industries is increasing rapidly, and this demand can be met by increasing the capacity utilization of steam boilers. Many of the process industries depend on industrial steam boilers as a vital component for their operation. The availability of the boiler can be improved by identifying critical mechanical subsystems/components concerning failure frequency, reliability, and maintainability and minimizing their likelihood of occurrences. The selection of appropriate technique for data collection and reliability analysis is essential. The time between failure (TBF) and time to repair (TTR) of all components and subsystems were collected to carry out reliability, availability, and maintainability (RAM) analysis. The best-fit distribution and distribution parameters were calculated using reliasoft software weibull++10 after performing trend testing. The preventive maintenance intervals of all components and subsystems and the availability of the system were evaluated. The analysis reveals that the combustion system, feed-water system, and blow-down system are the critical subsystems from a reliability perspective and are still the biggest reasons for the boiler downtime. The research study also showed that TTR was longer for the combustion system than the other subsystems, and thus, to enhance its availability, it is suggested that maintenance resources should be allocated at the appropriate moment to the combustion system. The study also shows the usage of RAM analysis in deciding the preventive maintenance intervals of components/subsystems of the boiler. It also provides a reference for the preparation of the maintenance plan for the boiler system.

References

1.
Birolini
,
A.
,
2010
,
Reliability Engineering Theory and Practices
, 6th ed.,
Springer
, London/New York.
2.
Ebling
,
C. E.
,
1997
,
An Introduction to Reliability and Maintainability Engineering
,
University of Dayton/Tata McGraw-Hill Education Private Limited
, Dayton, OH.
3.
Duarte
,
C.
,
Espejo
,
E.
, and
Martinez
,
J. C.
,
2017
, “
Failure Analysis of the Wall Tubes of a Water-Tube Boiler
,”
Eng. Failure Anal.
,
79
, pp.
704
713
.10.1016/j.engfailanal.2017.05.032
4.
Liu
,
S.
,
Wang
,
W.
, and
Liu
,
C.
,
2017
, “
Failure Analysis of the Boiler Water-Wall Tube
,”
Eng. Failure Anal.
,
9
, pp.
35
39
.10.1016/j.csefa.2017.06.002
5.
Moghanlou
,
L.
, and
Mohammad
,
M.
,
2017
, “
Assessment of the Pitting Corrosion Degradation Lifetime; Case Study of Boiler Tubes
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
3
(
4
), p. 041002.10.1115/1.4036064
6.
Lee
,
H.
,
Jung
,
J.
,
Kim
,
D.
, and
Yoo
,
K.
,
2015
, “
Failure Analysis on Welded Joints of 347H Austenitic Boiler Tubes
,”
Eng. Failure Anal.
,
57
, pp.
413
422
.10.1016/j.engfailanal.2015.08.024
7.
ChaudhuriSingh
,
S. R.
,
1997
, “
High Temperature Boiler Tubes Failures: Case Studies
,”
COFA Proceedings
, Jamshedpur, India, Feb. 18–19, pp.
107
120
.
8.
Dhua
,
S. K.
,
2010
, “
Metallurgical Investigation of Failed Boiler Water Wall Tubes Received From a Thermal Power Station
,”
Eng. Failure Anal.
,
17
(
7–8
), pp.
1572
1579
.10.1016/j.engfailanal.2010.06.004
9.
Vandermeer
,
W.
,
1998
, “
Flame Safeguard Control in Multi-Burner Environment
,” Report, pp.
1
33
.
10.
Soetjahjo
,
J.
, and
Abouelrish
,
A.
,
2013
, “
A Case Study of Boiler Control at SBM Offshore Malaysia Company
,” SBM, Labuan, Malaysia, Report.
11.
Mariajayaprakash
,
A.
, and
Senthilvelan
,
T.
,
2013
, “
Failure Detection and Optimization of Sugar Mill Boiler Using FMEA and Taguchi Method
,”
Eng. Failure Anal.
,
30
, pp.
17
26
.10.1016/j.engfailanal.2012.12.010
12.
Wang
,
J.
,
Fu
,
C.
,
Yang
,
K.
,
Zhang
,
X.
,
Shi
,
G.
, and
Zhai
,
J.
,
2013
, “
Reliability and Availability Analysis of Redundant BCHP (Building Cooling, Heating and Power) System
,”
Energy
,
61
, pp.
531
540
.10.1016/j.energy.2013.09.018
13.
Barry
,
D. M.
, and
Hudson
,
M. W.
,
1986
, “
Reliability Modelling for the Scheduling of Plant Work in Majority Vote Mode
,”
Int. J. Qual. Reliab. Manage.
,
3
(
2
), pp.
12
20
.10.1108/eb002861
14.
Parthiban
,
K. K.
,
2006
, “
Fans at Work in Boilers
,”
Venus Energy Audit System
.
15.
Thompson
,
R.
, and
Wong
,
D.
,
2010
, “
Boiler Induced Draft Fan Optimisation
,”
Australian Society of Sugar Cane Technologists
, Vol.
32
, Boronia, Victoria, pp.
665
678
.
16.
Rajkumar
,
T.
,
Ramma Priyaa
,
V. M.
, and
Gobi
,
K.
,
2013
, “
Boiler Drum Level Control by Using Wide Open Control With Three Element Control System
,”
Int. J. Sci. Eng. Res.
,
4
(
5
), pp.
204
210
.
17.
Jagtap
,
H. P.
, and
Bewoor
,
A. K.
,
2017
, “
Use of Analytic Hierarchy Process Methodology for Criticality Analysis of Thermal Power Plant Equipments
,”
Mater. Today: Proc.
,
4
, pp.
1927
1936
.10.1016/j.matpr.2017.02.038
18.
Carazas
,
F. J. G.
,
Salazar
,
C. H.
, and
Souza
,
G. F. M.
,
2011
, “
Availability Analysis of Heat Recovery Steam Generators Used in Thermal Power Plant
,”
Energy
,
36
(
6
), pp.
3855
3870
.10.1016/j.energy.2010.10.003
19.
Agarwal
,
S.
, and
Suhane
,
A.
,
2017
, “
Study of Boiler Maintenance for Enhanced Reliability of System a Review
,”
Mater. Today: Proc.
,
4
, pp.
1542
1549
.10.1016/j.matpr.2017.01.177
20.
Macek
,
K.
,
Endel
,
P.
,
Cauchi
,
N.
, and
Abate
,
A.
,
2017
, “
Long-Term Predictive Maintenance: A Study of Optimal Cleaning of Biomass Boilers
,”
Energy Build.
,
150
, pp.
111
117
.10.1016/j.enbuild.2017.05.055
21.
Kiran
,
S.
,
Prajeeth Kumar
,
K. P.
,
Sreejith
,
B.
, and
Muralidharan
,
M.
,
2016
, “
Reliability Evaluation and Risk Based Maintenance in a Process Plant
,”
Procedia Technol.
,
24
, pp.
576
583
.10.1016/j.protcy.2016.05.117
22.
Marquez
,
A. C.
, and
Iung
,
B.
,
2007
, “
A Structured Approach for the Assessment of System Availability and Reliability Using Monte Carlo Simulation
,”
J. Qual. Maint. Eng.
,
13
(
2
), pp.
125
136
.10.1108/13552510710753032
23.
Arjunwadkar
,
A.
,
Basu
,
P.
, and
Acharya
,
B.
,
2016
, “
A Review of Some Operation and Maintenance Issues of CFBC Boilers
,”
Appl. Therm. Eng.
,
102
, pp.
672
694
.10.1016/j.applthermaleng.2016.04.008
24.
Woo
,
G. T.
,
1980
, “
Reliability Analysis of a Fluidized-Bed Boiler for a Coal-Fueled Power Plant
,”
IEEE Trans. Reliab.
,
R-29
(
5
), pp.
422
424
.10.1109/TR.1980.5220908
25.
Patil
,
R. B.
,
Kothavale
,
B. S.
,
Waghmode
,
L. Y.
, and
Joshi
,
S. G.
,
2017
, “
Reliability Analysis of CNC Turning Center Based on the Assessment of Trends in Maintenance Data—A Case Study
,”
Int. J. Qual. Reliab. Manage.
,
34
(
9
), pp.
1616
1638
.10.1108/IJQRM-08-2016-0126
26.
Navas
,
M. A.
,
Sancho
,
C.
, and
Carpio
,
J.
,
2017
, “
Reliability Analysis in Railway Repairable Systems
,”
Int. J. Qual. Reliab. Manage.
,
34
(
8
), pp.
1373
1398
.10.1108/IJQRM-06-2016-0087
27.
Waghmode
,
L. Y.
, and
Patil
,
R. B.
,
2016
, “
Reliability Analysis and Life Cycle Cost Optimization: A Case Study From Indian Industry
,”
Int. J. Qual. Reliab. Manage.
,
33
(
3
), pp.
414
429
.10.1108/IJQRM-11-2014-0184
28.
Kumar
,
A.
,
Pant
,
S.
, and
Singh
,
S. B.
,
2017
, “
Availability and Cost Analysis of an Engineering System Involving Subsystems in Series Configuration
,”
Int. J. Qual. Reliab. Manage.
,
34
(
6
), pp.
879
894
.10.1108/IJQRM-06-2016-0085
29.
Saraswat
,
S.
, and
Yadava
,
G. S.
,
2007
, “
An Overview on Reliability, Availability, Maintainability and Supportability (RAMS) Engineering
,”
Int. J. Qual. Reliab. Manage.
,
25
(
3
), pp.
330
344
.
30.
Malik
,
S.
, and
Tewari
,
P. C.
,
2018
, “
Performance Modeling and Maintenance Priorities Decision for Water Flow System of a Coal Based Thermal Power Plant
,”
Int. J. Qual. Reliab. Manage.
,
35
(
4
), pp.
996
1010
.10.1108/IJQRM-03-2017-0037
31.
Barabady
,
J.
, and
Kumar
,
U.
,
2008
, “
Reliability Analysis of Mining Equipment: A Case Study of a Crushing Plant at Jajarm Bauxite Mine in Iran
,”
Reliab. Eng. Syst. Saf.
,
93
, pp.
647
653
.10.1016/j.ress.2007.10.006
32.
Adhikary
,
D. D.
,
Bose
,
G. K.
,
Chattopadhyay
,
S.
,
Bose
,
D.
, and
Mitra
,
S.
,
2012
, “
RAM Investigation of Coal-Fired Thermal Power Plants: A Case Study
,”
Int. J. Ind. Eng. Comput.
,
3
(
3
), pp.
423
434
.10.5267/j.ijiec.2011.12.003
33.
Jolly
,
S. S.
, and
Singh
,
B. J.
,
2014
, “
An Approach to Enhance Availability of Repairable Systems: A Case Study of SPMs
,”
Int. J. Qual. Reliab. Manage.
,
31
(
9
), pp.
1031
1051
.10.1108/IJQRM-02-2014-0016
34.
Corvaro
,
F.
,
Giacchetta
,
G.
,
Marchetti
,
B.
, and
Recanati
,
M.
,
2017
, “
Reliability, Availability, Maintainability (RAM) Study on Reciprocating Compressors
,”
Petroleum
,
3
(
2
), pp.
266
272
.10.1016/j.petlm.2016.09.002
35.
Choudhary
,
D.
,
Tripathi
,
M.
, and
Shankar
,
R.
,
2019
, “
Reliability, Availability and Maintainability Analysis of a Cement Plant: A Case Study
,”
Int. J. Qual. Reliab. Manage.
,
36
(
3
), pp.
298
313
.10.1108/IJQRM-10-2017-0215
36.
Ascher
,
H. E.
, and
Feingold
,
H.
,
1984
,
Repairable System Reliability: Modeling, Interface, Misconception and Their Causes
,
Marcel Dekker
,
New York
.
37.
Louit
,
D. M.
,
Pascual
,
R.
, and
Jardine
,
A. K. S.
,
2009
, “
A Practical Procedure for the Selection of Time-to-Failure Models Based on the Assessment of Trends in Maintenance Data
,”
Reliab. Eng. Syst. Saf.
,
94
(
10
), pp.
1618
1628
.10.1016/j.ress.2009.04.001
38.
Patil
,
S. S.
, and
Bewoor
,
A. K.
,
2020
, “
Reliability Analysis of a Steam Boiler System by Expert Judgment Method and Best Fit Failure Model Method: A New Approach
,”
Int. J. Qual. Reliab. Manage.
, epub.10.1108/IJQRM-01-2020-0023
39.
Patil
,
R. B.
,
Kothavale
,
B. S.
, and
Waghmode
,
L. Y.
,
2019
, “
Selection of Time-to-Failure Model for Computerized Numerical Control Turning Center Based on the Assessment of Trends in Maintenance Data
,”
Proc. Inst. Mech. Eng., Part O
,
233
(
2
), pp.
105
117
.
40.
Patil
,
R. B.
,
Kothavale
,
B. S.
,
Waghmode
,
L. Y.
, and
Pecht
,
M.
,
2019
, “
Life Cycle Cost Analysis of a Computerized Numerical Control Machine Tool: A Case Study From Indian Manufacturing Industry
,”
J. Qual. Maint. Eng.
, epub. 10.1108/JQME-07-2019-0069
You do not currently have access to this content.