Abstract

A persistent problem in the selective laser sintering process is to maintain the quality of additively manufactured parts, which can be attributed to the various sources of uncertainty. In this work, a two-particle phase-field microstructure model has been analyzed using a Gaussian process-based model. The sources of uncertainty as the two input parameters were surface diffusivity and interparticle distance. The response quantity of interest (QOI) was selected as the size of the neck region that develops between the two particles. Two different cases with equal and unequal-sized particles were studied. It was observed that the neck size increased with increasing surface diffusivity and decreased with increasing interparticle distance irrespective of particle size. Sensitivity analysis found that the interparticle distance has more influence on variation in neck size than that of surface diffusivity. The machine learning algorithm Gaussian process regression was used to create the surrogate model of the QOI. Bayesian optimization method was used to find optimal values of the input parameters. For equal-sized particles, optimization using Probability of Improvement provided optimal values of surface diffusivity and interparticle distance as 23.8268 and 40.0001, respectively. The Expected Improvement as an acquisition function gave optimal values of 23.9874 and 40.7428, respectively. For unequal-sized particles, optimal design values from Probability of Improvement were 23.9700 and 33.3005, respectively, while those from Expected Improvement were 23.9893 and 33.9627, respectively. The optimization results from the two different acquisition functions seemed to be in good agreement.

References

1.
Zhang
,
Y.
,
Jung
,
Y.-G.
, and
Zhang
,
J.
,
2020
,
Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process
,
Elsevier
, Philadelphia, PA.
2.
Wang
,
Y. U.
,
2006
, “
Computer Modeling and Simulation of Solid-State Sintering: A Phase Field Approach
,”
Acta Mater.
,
54
(
4
), pp.
953
961
.10.1016/j.actamat.2005.10.032
3.
Demirskyi
,
D.
,
Borodianska
,
H.
,
Agrawal
,
D.
,
Ragulya
,
A.
,
Sakka
,
Y.
, and
Vasylkiv
,
O.
,
2012
, “
Peculiarities of the Neck Growth Process During Initial Stage of Spark-Plasma, Microwave and Conventional Sintering of WC Spheres
,”
J. Alloys Compd.
,
523
, pp.
1
10
.10.1016/j.jallcom.2012.01.146
4.
Xu
,
X.
,
Lu
,
P.
, and
German
,
R. M.
,
2002
, “
Densification and Strength Evolution in Solid-State Sintering Part II Strength Model
,”
J. Mater. Sci.
,
37
(
1
), pp.
117
126
.10.1023/A:1013110328307
5.
German
,
R. M.
,
1996
,
Sintering Theory and Practice
,
Wiley-Interscience
, Hoboken, NJ.
6.
German
,
R. M.
,
2003
, “
Strength Evolution in Debinding and Sintering
,”
Proceedings of Sintering the Third International Conference on the Science, Technology & Applications of Sintering
,
University Park
,
PA
, Sept. 15–17, pp.
1
13
.https://www.cavs.msstate.edu/publications/docs/2003/07/2003-16.pdf
7.
Pavan
,
M.
,
Craeghs
,
T.
,
Verhelst
,
R.
,
Ducatteeuw
,
O.
,
Kruth
,
J.-P.
, and
Dewulf
,
W.
,
2016
, “
CT-Based Quality Control of Laser Sintering of Polymers
,”
Case Studies Nondestruct. Test. Eval.
,
6
, pp.
62
68
.10.1016/j.csndt.2016.04.004
8.
Dotchev
,
K.
, and
Yusoff
,
W.
,
2009
, “
Recycling of Polyamide 12 Based Powders in the Laser Sintering Process
,”
Rapid Prototyping J.
,
15
(
3
), pp.
192
203
.10.1108/13552540910960299
9.
Karapatis
,
N. P.
,
Egger
,
G.
,
Gygax
,
P. E.
, and
Glardon
,
R.
,
1999
, “
Optimization of Powder Layer Density in Selective Laser Sintering
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 9–11, pp.
255
264
.https://repositories.lib.utexas.edu/handle/2152/73604
10.
Zarringhalam
,
H.
,
Majewski
,
C.
, and
Hopkinson
,
N.
,
2009
, “
Degree of Particle Melt in Nylon‐12 Selective Laser‐Sintered Parts
,”
Rapid Prototyping J.
,
15
(
2
), pp.
126
132
.10.1108/13552540910943423
11.
Phillips
,
T.
,
Fish
,
S.
, and
Beaman
,
J.
,
2018
, “
Development of an Automated Laser Control System for Improving Temperature Uniformity and Controlling Component Strength in Selective Laser Sintering
,”
Addit. Manuf.
,
24
, pp.
316
322
.10.1016/j.addma.2018.10.016
12.
Wegner
,
A.
, and
Witt
,
G.
,
2011
, “
Process Monitoring in Laser Sintering Using Thermal Imaging
,”
SFF Symposium
,
Austin, TX
, Aug. 8–10, pp.
405
414
.https://www.researchgate.net/publication/268061485_Process_monitoring_in_laser_sintering_using_thermal_imaging
13.
Olakanmi
,
E. O.
,
2012
, “
Effect of Mixing Time on the Bed Density, and Microstructure of Selective Laser Sintered (Sls) Aluminium Powders
,”
Mater. Res.
,
15
(
2
), pp.
167
176
.10.1590/S1516-14392012005000031
14.
Olakanmi
,
E.
,
Cochrane
,
R.
, and
Dalgarno
,
K.
,
2011
, “
Densification Mechanism and Microstructural Evolution in Selective Laser Sintering of Al–12Si Powders
,”
J. Mater. Process. Technol.
,
211
(
1
), pp.
113
121
.10.1016/j.jmatprotec.2010.09.003
15.
Biswas
,
S.
,
Schwen
,
D.
,
Singh
,
J.
, and
Tomar
,
V.
,
2016
, “
A Study of the Evolution of Microstructure and Consolidation Kinetics During Sintering Using a Phase Field Modeling Based Approach
,”
Extreme Mech. Lett.
,
7
, pp.
78
89
.10.1016/j.eml.2016.02.017
16.
Hötzer
,
J.
,
Seiz
,
M.
,
Kellner
,
M.
,
Rheinheimer
,
W.
, and
Nestler
,
B.
,
2019
, “
Phase-Field Simulation of Solid State Sintering
,”
Acta Mater.
,
164
, pp.
184
195
.10.1016/j.actamat.2018.10.021
17.
Biswas
,
S.
,
Schwen
,
D.
, and
Tomar
,
V.
,
2018
, “
Implementation of a Phase Field Model for Simulating Evolution of Two Powder Particles Representing Microstructural Changes During Sintering
,”
J. Mater. Sci.
,
53
(
8
), pp.
5799
5825
.10.1007/s10853-017-1846-3
18.
Asp
,
K.
, and
Ågren
,
J.
,
2006
, “
Phase-Field Simulation of Sintering and Related Phenomena–a Vacancy Diffusion Approach
,”
Acta Mater.
,
54
(
5
), pp.
1241
1248
.10.1016/j.actamat.2005.11.005
19.
Kumar
,
V.
,
Fang
,
Z.
, and
Fife
,
P.
,
2010
, “
Phase Field Simulations of Grain Growth During Sintering of Two Unequal-Sized Particles
,”
Mater. Sci. Eng. A
,
528
(
1
), pp.
254
259
.10.1016/j.msea.2010.08.061
20.
Dzepina
,
B.
,
Balint
,
D.
, and
Dini
,
D.
,
2019
, “
A Phase Field Model of Pressure-Assisted Sintering
,”
J. Eur. Ceram. Soc.
,
39
(
2–3
), pp.
173
182
.10.1016/j.jeurceramsoc.2018.09.014
21.
Termuhlen
,
R.
,
Chatzistavrou
,
X.
,
Nicholas
,
J. D.
, and
Yu
,
H.-C.
,
2021
, “
Three-Dimensional Phase Field Sintering Simulations Accounting for the Rigid-Body Motion of Individual Grains
,”
Comput. Mater. Sci.
,
186
, p.
109963
.10.1016/j.commatsci.2020.109963
22.
Swaroop
,
A.
,
Himasree
,
V.
, and
Thomas
,
T.
,
2021
, “
Machine Learning Based a Priori Prediction on Powder Samples of Sintering-Driven Abnormal Grain Growth
,”
Comput. Mater. Sci.
,
187
, p.
110117
.10.1016/j.commatsci.2020.110117
23.
Song
,
L.
,
Qing
,
L.
,
Xiaojie
,
L.
, and
Yanqin
,
S.
,
2020
, “
Synthetically Predicting the Quality Index of Sinter Using Machine Learning Model
,”
Ironmaking Steelmaking
,
47
(
7
), pp.
1
9
.10.1080/03019233.2019.1617573
24.
Xiao
,
L.
,
Lu
,
M.
, and
Huang
,
H.
,
2020
, “
Detection of Powder Bed Defects in Selective Laser Sintering Using Convolutional Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5–6
), pp.
2485
2496
.10.1007/s00170-020-05205-0
25.
Wu
,
Z.
,
2020
, “
Transfer Learning Aid the Prediction of Sintering Densification
,”
Ceram. Int.
,
46
(
16
), pp.
25200
25210
.https://www.sciencedirect.com/science/article/pii/S0272884220319817
26.
Zhang
,
J-h.
,
Xie
,
A-G.
, and
Shen
,
F-M.
,
2007
, “
Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network
,”
J. Iron Steel Res. Int.
,
14
(
2
), pp.
1
5
.10.1016/S1006-706X(07)60018-1
27.
Biner
,
S. B.
,
2017
,
Programming Phase-Field Modeling
,
Springer
, New York.
28.
Rasmussen
,
C. E.
,
2003
, “
Gaussian Processes in Machine Learning
,”
Summer School on Machine Learning
,
Springer
, New York.
29.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Hoboken, NJ.
30.
Anderson
,
M. J.
, and
Whitcomb
,
P. J.
,
2000
, “
Design of Experiments
,” pp.
1
22
. Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc, Hoboken, NJ.
31.
Couckuyt
,
I.
,
Dhaene
,
T.
, and
Demeester
,
P.
,
2014
, “
ooDACE Toolbox: A Flexible Object-Oriented Kriging Implementation
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
3183
3186
.10.5555/2627435.2697066
32.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning
, Vol.
1
,
Springer Series in Statistics
,
New York
.
33.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley
, Hoboken, NJ.
34.
Ghosh
,
S.
,
Mahmoudi
,
M.
,
Johnson
,
L.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Allaire
,
D.
,
2019
, “
Uncertainty Analysis of Microsegregation During Laser Powder Bed Fusion
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
3
), p.
034002
.10.1088/1361-651X/ab01bf
35.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
36.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.10.1007/BF00175354
37.
Yang
,
Y.
,
Ragnvaldsen
,
O.
,
Bai
,
Y.
,
Yi
,
M.
, and
Xu
,
B.-X.
,
2019
, “
3D Non-Isothermal Phase-Field Simulation of Microstructure Evolution During Selective Laser Sintering
,”
NPJ Comput. Mater.
,
5
(
1
), p.
81
.10.1038/s41524-019-0219-7
You do not currently have access to this content.