ABSTRACT

Smart manufacturing has opened tremendous opportunities to access, collect, and analyze a plethora of process and product data. Simultaneously, the manufacturing domain presents unique challenges regarding data for current modeling approaches—be it machine learning or physics-based models. In this paper, we highlight the opportunity presented by combining data-driven and physics-based models in a hybrid approach to address these data challenges. The paper provides a depiction of the unique data challenges in the manufacturing domain, illustrates the different facets of data analytics in manufacturing (including physics-based, data-driven, and hybrid modeling), and provides a qualitative mapping of fit for the different modeling classes on the data challenge dimensions.

References

1.
K.-D.
 
Thoben
,
S.
 
Wiesner
, and
T.
 
Wuest
, “
‘Industrie 4.0’ and Smart Manufacturing–A Review of Research Issues and Application Examples
,”
International Journal of Automotive Technology
11
, no. 
1
(January
2017
):
4
16
,
2.
E.
 
Wallace
and
F.
 
Riddick
, “
Panel on Enabling Smart Manufacturing
” (paper presentation,
APMS 2013 Conference
,
State College, PA
, September
9–12
,
2013
).
3.
F.
 
Tao
,
Q.
 
Qi
,
A.
 
Liu
, and
A.
 
Kusiak
, “
Data-Driven Smart Manufacturing
,”
Journal of Manufacturing Systems
48
, Part C (July
2018
):
157
169
,
4.
L.
 
Monostori
,
B.
 
Kádár
,
T.
 
Bauernhansl
,
S.
 
Kondoh
,
S.
 
Kumara
,
G.
 
Reinhart
,
O.
 
Sauer
,
G.
 
Schuh
,
W.
 
Sihn
, and
K.
 
Ueda
, “
Cyber-Physical Systems in Manufacturing
,”
CIRP Annals
65
, no. 
2
(
2016
):
621
641
,
5.
S.
 
Liang
,
M.
 
Rajora
,
X.
 
Liu
,
C.
 
Yue
,
P.
 
Zou
, and
L.
 
Wang
, “
Intelligent Manufacturing Systems: A Review
,”
International Journal of Mechanical Engineering and Robotics Research
7
, no. 
2
(May
2018
):
324
330
,
6.
M.
 
Papananias
,
T. E.
 
McLeay
,
M.
 
Mahfouf
, and
V.
 
Kadirkamanathan
, “
A Bayesian Framework to Estimate Part Quality and Associated Uncertainties in Multistage Manufacturing
,”
Computers in Industry
105
(
2019
):
35
47
,
7.
J.
 
Moyne
and
J.
 
Iskandar
, “
Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing
,”
Processes
5
, no. 
3
(September
2017
):
39
,
8.
M.
 
Rezaei-Malek
,
M.
 
Mohammadi
,
J.-Y.
 
Dantan
,
A.
 
Siadat
, and
R.
 
Tavakkoli-Moghaddam
, “
A Review on Optimisation of Part Quality Inspection Planning in a Multi-stage Manufacturing System
,”
International Journal of Production Research
57
, nos.
15–16
(April
2018
):
4880
4897
,
9.
J.
 
Lenz
,
T.
 
Wuest
, and
E.
 
Westkämper
, “
Holistic Approach to Machine Tool Data Analytics
,”
Journal of Manufacturing Systems
48
, Part C (July
2018
):
180
191
,
10.
R.
 
Bhinge
,
N.
 
Biswas
,
D.
 
Dornfeld
,
J.
 
Park
,
K. H.
 
Law
,
M.
 
Helu
, and
S.
 
Rachuri
, “
An Intelligent Machine Monitoring System for Energy Prediction Using a Gaussian Process Regression
,” in
2014 IEEE International Conference on Big Data (Big Data)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2014
),
978
986
, https://doi.org/10.1109/BigData.2014.7004331
11.
S.-J.
 
Shin
,
J.
 
Woo
,
S.
 
Rachuri
, and
P.
 
Meilanitasari
, “
Standard Data-Based Predictive Modeling for Power Consumption in Turning Machining
,”
Sustainability
10
, no. 
3
(March
2018
):
598
,
12.
L. D.
 
Xu
and
L.
 
Duan
, “
Big Data for Cyber Physical Systems in Industry 4.0: A Survey
,”
Enterprise Information Systems
13
, no. 
2
(
2019
):
148
169
,
13.
M.
 
Mohammadi
,
J.-Y.
 
Dantan
,
A.
 
Siadat
, and
R.
 
Tavakkoli-Moghaddam
, “
A Bi-objective Robust Inspection Planning Model in a Multi-stage Serial Production System
,”
International Journal of Production Research
56
, no. 
4
(
2018
):
1432
1457
,
14.
M.
 
Colledani
,
T.
 
Tolio
,
A.
 
Fischer
,
B.
 
Iung
,
G.
 
Lanza
,
R.
 
Schmitt
, and
J.
 
Váncza
, “
Design and Management of Manufacturing Systems for Production Quality
,”
CIRP Annals
63
, no. 
2
(
2014
):
773
796
,
15.
S. S.
 
Mandroli
,
A. K.
 
Shrivastava
, and
Y.
 
Ding
, “
A Survey of Inspection Strategy and Sensor Distribution Studies in Discrete-Part Manufacturing Processes
,”
IIE Transactions
38
, no. 
4
(
2006
):
309
328
,
16.
M. G.
 
Gnoni
,
R.
 
Iavagnilio
,
G.
 
Mossa
,
G.
 
Mummolo
, and
A.
 
Di Leva
, “
Production Planning of a Multi-site Manufacturing System by Hybrid Modelling: A Case Study from the Automotive Industry
,”
International Journal of Production Economics
85
, no. 
2
(August
2003
):
251
262
,
17.
A.
 
Kusiak
, “
Smart Manufacturing
,”
International Journal of Production Research
56
, nos.
1–2
(
2018
):
508
517
,
18.
M.
 
Sharp
,
R.
 
Ak
, and
T.
 
Hedberg
Jr.
, “
A Survey of the Advancing Use and Development of Machine Learning in Smart Manufacturing
,”
Journal of Manufacturing Processes
48
, Part C (July
2018
):
170
179
,
19.
S. C.-Y.
 
Lu
, “
Machine Learning Approaches to Knowledge Synthesis and Integration Tasks for Advanced Engineering Automation
,”
Computers in Industry
15
, nos. 
1–2
(
1990
):
105
120
,
20.
J. A.
 
Harding
,
M.
 
Shahbaz
,
Srinivas
, and
A.
 
Kusiak
, “
Data Mining in Manufacturing: A Review
,”
Journal of Manufacturing Science and Engineering
128
, no. 
4
(November
2006
):
969
976
,
21.
J.
 
Lee
,
E.
 
Lapira
,
B.
 
Bagheri
, and
H.-A.
 
Kao
, “
Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment
,”
Manufacturing Letters
1
, no. 
1
(October
2013
):
38
41
,
22.
T.
 
Wuest
,
D.
 
Weimer
,
C.
 
Irgens
, and
K.-D.
 
Thoben
, “
Machine Learning in Manufacturing: Advantages, Challenges and Applications
,”
Production & Manufacturing Research
4
, no. 
1
(
2016
):
23
45
,
23.
R.
 
Rai
,
M. K.
 
Tiwari
,
D.
 
Ivanov
, and
A.
 
Dolgui
, “
Machine Learning in Manufacturing and Industry 4.0 Applications
,”
International Journal of Production Research
59
, no. 
16
(
2021
):
4773
4778
,
24.
C.-J.
 
Chang
,
D.-C.
 
Li
,
Y.-H.
 
Huang
, and
C.-C.
 
Chen
, “
A Novel Gray Forecasting Model Based on the Box Plot for Small Manufacturing Data Sets
,”
Applied Mathematics and Computation
265
(
2015
):
400
408
,
25.
S.
 
Rezaei
,
A.
 
Cornelius
,
J.
 
Karandikar
,
T.
 
Schmitz
, and
A.
 
Khojandi
, “
Using GANs to Predict Milling Stability from Limited Data
,”
Journal of Intelligent Manufacturing
. Published ahead of print January 13,
2024
,
1
35
,
26.
H.
 
Khosravi
,
T.
 
Olajire
,
A. S.
 
Raihan
, and
I.
 
Ahmed
, “
A Data Driven Sequential Learning Framework to Accelerate and Optimize Multi-objective Manufacturing Decisions
,”
Journal of Intelligent Manufacturing
. Published ahead of print March 18,
2024
,
1
26
,
27.
T.
 
Wuest
,
Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning
(
Cham Switzerland
:
Springer Cham
,
2015
).
28.
F.
 
Provost
,
Machine Learning from Imbalanced Data Sets 101, AAAI Technical Report WS-00-05
(
Washington, DC
:
AAAI Press
,
2000
).
29.
B.
 
Li
,
J.
 
Hu
, and
K.
 
Hirasawa
, “
Support Vector Machine Classifier with WHM Offset for Unbalanced Data
,”
Journal of Advanced Computational Intelligence and Intelligent Informatics
12
, no. 
1
(January
2008
):
94
101
,
30.
J. M.
 
Choi
,
“A Selective Sampling Method for Imbalanced Data Learning on Support Vector Machines
” (PhD diss., Iowa State University,
2010
).
31.
B. X.
 
Wang
and
N.
 
Japkowicz
, “
Boosting Support Vector Machines for Imbalanced Data Sets
,”
Knowledge and Information Systems
25
, no. 
1
(October
2010
):
1
20
,
32.
S.
 
Chand
and
Davis
, “
What Is Smart Manufacturing?
Time Magazine Wrapper
, July
2010
, https://www.scribd.com/document/91092481/Time-Magazine-What-is-Smart-Manufactuing
33.
M.
 
Schmidt
and
H.
 
Lipson
, “
Distilling Free-Form Natural Laws from Experimental Data
,”
Science
324
, no. 
5923
(April
2009
):
81
85
,
34.
D.
 
Castelvecchi
, “
Can We Open the Black Box of AI?
Nature
538
, no. 
7623
(October
2016
):
20
23
,
35.
J.
 
Krause
,
A.
 
Perer
, and
K.
 
Ng
, “
Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models
,” in
2016 CHI Conference on Human Factors in Computing Systems
(
New York
:
Association for Computing Machinery
,
2016
),
5686
5697
, https://doi.org/10.1145/2858036.2858529
36.
U.
 
Leturiondo
, “
Hybrid Modeling in Condition Monitoring
” (PhD diss., Lulea University of Technology,
2016
).
37.
E. B.
 
Goldstein
and
G.
 
Coco
, “
Machine Learning Components in Deterministic Models: Hybrid Synergy in the Age of Data
,”
Frontiers in Environmental Science
3
(
2015
):
33
,
38.
V. M.
 
Krasnopolsky
and
M. S.
 
Fox-Rabinovitz
, “
A New Synergetic Paradigm in Environmental Numerical Modeling: Hybrid Models Combining Deterministic and Machine Learning Components
,”
Ecological Modelling
191
, no. 
1
(January
2006
):
5
18
,
39.
C.
 
Sankavaram
,
A.
 
Kodali
,
K. R.
 
Pattipati
, and
S.
 
Singh
, “
Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems
,”
IEEE Access
3
(
2015
):
407
419
,
40.
R.
 
Gao
,
L.
 
Wang
,
R.
 
Teti
,
D.
 
Dornfeld
,
S.
 
Kumara
,
M.
 
Mori
, and
M.
 
Helu
, “
Cloud-Enabled Prognosis for Manufacturing
,”
CIRP Annals
64
, no. 
2
(
2015
):
749
772
,
41.
J.
 
Sjöberg
,
Q.
 
Zhang
,
L.
 
Ljung
,
A.
 
Benveniste
,
B.
 
Delyon
,
P.-Y.
 
Glorennec
,
H.
 
Hjalmarsson
, and
A.
 
Juditsky
, “
Nonlinear Black-Box Modeling in System Identification: A Unified Overview
,”
Automatica
31
, no. 
12
(December
1995
):
1691
1724
,
42.
F.-Y.
 
Tzeng
and
K.-L.
 
Ma
, “
Opening the Black Box–Data Driven Visualization of Neural Networks
,” in
VIS 05. IEEE Visualization, 2005
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2005
),
383
390
, https://doi.org/10.1109/VISUAL.2005.1532820
43.
D.
 
Gunning
and
D. W.
 
Aha
, “
DARPA’s Explainable Artificial Intelligence (XAI) Program
,”
AI Magazine
40
, no. 
2
(Summer
2019
):
44
58
,
44.
Z.
 
Alexander
,
D. H.
 
Chau
, and
C.
 
Saldaña
, “
An Interrogative Survey of Explainable AI in Manufacturing
,”
IEEE Transactions on Industrial Informatics
20
, no. 
5
(May
2024
):
7069
7081
,
45.
OpenAI
, “
ChatGPT
,”
ChatGPT
,
2024
, https://chat.openai.com/
46.
X.
 
Liu
,
D.
 
Yin
,
C.
 
Zhang
,
Y.
 
Feng
, and
D.
 
Zhao
, “
The Magic of IF: Investigating Causal Reasoning Abilities in Large Language Models of Code
,” in
Findings of the Association for Computational Linguistics: ACL 2023
, ed.
A.
 
Rogers
,
J.
 
Boyd-Graber
, and
N.
 
Okazaki
(
Toronto, Canada
:
Association for Computational Linguistics
,
2023
),
9009
9022
, https://doi.org/10.18653/v1/2023.findings-acl.574
47.
M.
 
Prosperi
,
S.
 
Ghosh
,
Z.
 
Chen
,
M.
 
Salemi
,
T.
 
Lyu
,
J.
 
Zhao
, and
J.
 
Bian
, “
Causal AI with Real World Data: Do Statins Protect from Alzheimer’s Disease Onset?
” in
Fifth International Conference on Medical and Health Informatics
(
New York
:
Association for Computer Machinery
,
2021
),
296
303
, https://doi.org/10.1145/3472813.3473206
48.
K.
 
Duraisamy
,
Data-Enabled, Physics-Constrained Predictive Modeling of Complex Systems
(
Ann Arbor, MI
:
University of Michigan
,
2018
).
49.
A.
 
Cubillo
,
S.
 
Perinpanayagam
,
M.
 
Rodriguez
,
I.
 
Collantes
, and
J.
 
Vermeulen
, “
Prognostics Health Management System Based on Hybrid Model to Predict Failures of a Planetary Gear Transmission
,” in
Machine Learning for Cyber Physical Systems
, ed.
O.
 
Niggemann
and
J.
 
Beyerer
(
Berlin, Germany
:
Springer Vieweg Verlag
,
2016
),
33
44
, https://doi.org/10.1007/978-3-662-48838-6_5
50.
H.
 
Van der Auweraer
, “
Connecting Physics-Based and Data-Driven Models: The Best of Two Worlds
” (paper presentation, Integrating Machine Learning and Predictive Simulation: From Uncertainty Quantification to Digital Twins, Minneapolis, MN, March 6,
2018
).
51.
A.
 
Rasheed
, “
Hybrid Analytics: Combining Physics-Based Modeling and Machine Learning Algorithms
” (paper presentation,
Kongsberg Technology Conference
,
Sundvollen, Norway
, September
6–7
,
2017
).
52.
L. H.
 
Chiang
,
R. D.
 
Braatz
, and
E. L.
 
Russel
,
Fault Detection and Diagnosis in Industrial Systems
(
London
:
Springer-Verlag London
,
2001
).
53.
R.
 
Rai
and
C. K.
 
Sahu
, “
Driven by Data or Derived through Physics? A Review of Hybrid Physics Guided Machine Learning Techniques with Cyber-Physical System (CPS) Focus
,”
IEEE Access
8
(
2020
):
71050
71073
,
54.
S.
 
Kasilingam
,
R.
 
Yang
,
S. K.
 
Singh
,
M.
 
Farahani
,
R.
 
Rai
, and
T.
 
Wuest
, “
Physics-Based and Data-Driven Hybrid Modeling in Manufacturing: A Review
,”
Production & Manufacturing Research
12
, no. 
1
(
2024
):
2305358
,
55.
R. F.
 
Reinhart
,
Z.
 
Shareef
, and
J. J.
 
Steil
, “
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control
,”
Sensors
17
, no. 
2
(February
2017
):
311
,
56.
A.
 
Karpatne
,
G.
 
Atluri
,
J. H.
 
Faghmous
,
M.
 
Steinbach
,
A.
 
Banerjee
,
A.
 
Ganguly
,
S.
 
Shekhar
,
N.
 
Samatova
, and
V.
 
Kumar
, “
Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data
,”
IEEE Transactions on Knowledge and Data Engineering
29
, no. 
10
(October
2017
):
2318
2331
,
57.
Y.
 
Xu
,
S.
 
Kohtz
,
J.
 
Boakye
,
P.
 
Gardoni
, and
P.
 
Wang
, “
Physics-Informed Machine Learning for Reliability and Systems Safety Applications: State of the Art and Challenges
,”
Reliability Engineering & System Safety
230
(
2023
):
108900
,
58.
G. E.
 
Karniadakis
,
I. G.
 
Kevrekidis
,
L.
 
Lu
,
P.
 
Perdikaris
,
S.
 
Wang
, and
L.
 
Yang
, “
Physics-Informed Machine Learning
,”
Nature Reviews Physics
3
, no. 
6
(June
2021
):
422
440
,
59.
H.
 
Wang
,
B.
 
Li
, and
F.-Z.
 
Xuan
, “
A Dimensionally Augmented and Physics-Informed Machine Learning for Quality Prediction of Additively Manufactured High-Entropy Alloy
,”
Journal of Materials Processing Technology
307
(
2022
):
117637
,
60.
S.
 
Guo
,
M.
 
Agarwal
,
C.
 
Cooper
,
Q.
 
Tian
,
R. X.
 
Gao
,
W. G.
 
Grace
, and
Y. B.
 
Guo
, “
Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm
,”
Journal of Manufacturing Systems
62
(
2022
):
145
163
,
61.
W. E.
 
Frazier
, “
Metal Additive Manufacturing: A Review
,”
Journal of Materials Engineering and Performance
23
, no. 
6
(June
2014
):
1917
1928
,
62.
P.
 
Wang
,
Z.
 
Liu
,
R. X.
 
Gao
, and
Y.
 
Guo
, “
Heterogeneous Data-Driven Hybrid Machine Learning for Tool Condition Prognosis
,”
CIRP Annals
68
, no. 
1
(
2019
):
455
458
, .
63.
J.
 
Schloss
, “
The Hybrid Future of Analytics
,”
CMSwire
,
2017
, https://www.cmswire.com/information-management/the-hybrid-future-of-analytics/
64.
Z.
 
Yang
,
D.
 
Eddy
,
S.
 
Krishnamurty
,
I.
 
Grosse
,
P.
 
Denno
,
Y.
 
Lu
, and
P.
 
Witherell
, “
Investigating Grey-Box Modeling for Predictive Analytics in Smart Manufacturing
,” in
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(
New York City: American Society of Mechanical Engineers
,
2017
),
V02BT03A024
, https://doi.org/10.1115/DETC2017-67794
65.
E. J.
 
Parish
and
K.
 
Duraisamy
, “
A Paradigm for Data-Driven Predictive Modeling Using Field Inversion and Machine Learning
,”
Journal of Computational Physics
305
(
2016
):
758
774
,
66.
B. P. M.
 
Duarte
and
P. M.
 
Saraiva
, “
Hybrid Models Combining Mechanistic Models with Adaptive Regression Splines and Local Stepwise Regression
,”
Industrial & Engineering Chemistry Research
42
, no. 
1
(January
2003
):
99
107
,
67.
K.
 
Tidriri
,
N.
 
Chatti
,
S.
 
Verron
, and
T.
 
Tiplica
, “
Bridging Data-Driven and Model-Based Approaches for Process Fault Diagnosis and Health Monitoring: A Review of Researches and Future Challenges
,”
Annual Reviews in Control
42
(
2016
):
63
81
,
68.
M.
 
Leonesio
and
L.
 
Fagiano
, “
A Semi-supervised Physics-Informed Classifier for Centerless Grinding Operations
,” in
2022 IEEE Conference on Control Technology and Applications (CCTA)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2022
),
977
982
, https://doi.org/10.1007/s10845-024-02337-y
69.
S.
 
Zeng
and
D.
 
Pi
, “
Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning
,”
Sensors
23
, no. 
10
(May
2023
):
4969
,
70.
V. O. A.
 
Akbari
,
M.
 
Kuffa
, and
K.
 
Wegener
, “
Physics-Informed Bayesian Machine Learning for Probabilistic Inference and Refinement of Milling Stability Predictions
,”
CIRP Journal of Manufacturing Science and Technology
45
(
2023
):
225
239
,
71.
Y.
 
Li
,
J.
 
Wang
,
Z.
 
Huang
, and
R. X.
 
Gao
, “
Physics-Informed Meta Learning for Machining Tool Wear Prediction
,”
Journal of Manufacturing Systems
62
(
2022
):
17
27
,
72.
Z.
 
Zhao
,
M.
 
Stuebner
,
J.
 
Lua
,
N.
 
Phan
, and
J.
 
Yan
, “
Full-Field Temperature Recovery during Water Quenching Processes via Physics-Informed Machine Learning
,”
Journal of Materials Processing Technology
303
(
2022
):
117534
,
73.
D.
 
Kats
,
Z.
 
Wang
,
Z.
 
Gan
,
W. K.
 
Liu
,
G. J.
 
Wagner
, and
Y.
 
Lian
, “
A Physics-Informed Machine Learning Method for Predicting Grain Structure Characteristics in Directed Energy Deposition
,”
Computational Materials Science
202
(
2022
):
110958
,
74.
A.
 
Sinha
,
E.
 
Bernardes
,
R.
 
Calderon
, and
T.
 
Wuest
,
Digital Supply Networks: Transform Your Supply Chain and Gain Competitive Advantage with Disruptive Technology and Reimagined Processes
(
New York
:
McGraw-Hill
,
2020
).
75.
M. A.
 
Farahani
,
M. R.
 
McChormick
,
R.
 
Harik
, and
T.
 
Wuest
, “
Time-Series Classification in Smart Manufacturing Systems: An Experimental Evaluation of State-of-the-Art Machine Learning Algorithms
,”
Robotics and Computer-Integrated Manufacturing
91
(
2025
):
102839
,
76.
J.
 
Günther
, “
Machine Intelligence for Adaptable Closed Loop and Open Loop Production Engineering Systems
” (PhD diss., Technical University Munich,
2018
).
77.
A.
 
Alzghoul
,
B.
 
Backe
,
M.
 
Löfstrand
,
A.
 
Byström
, and
B.
 
Liljedahl
, “
Comparing a Knowledge-Based and a Data-Driven Method in Querying Data Streams for System Fault Detection: A Hydraulic Drive System Application
,”
Computers in Industry
65
, no. 
8
(October
2014
):
1126
1135
,
You do not currently have access to this content.