ABSTRACT

The job shop scheduling problem is a classical optimization challenge aimed at determining the optimal processing order by assigning a set of resources to a corresponding set of operations. This article investigates various approaches to address the online job shop scheduling problem, employing a simulation-based study. Dispatching rules are applied to allocate resources to operations, with discrete event simulation used for problem assessment. The study also incorporates human productivity factors, specifically investigating the shortest processing time (SPT) dispatching rule in a separate scenario. Five distinct scenarios are simulated, including four dispatching rules (first in, first out; last in, first out; longest processing time; and SPT) and an additional scenario integrating the SPT rule and human productivity factors. The simulation results are used to compare makespan across these scenarios, revealing that the scenario involving the SPT dispatching rule and human productivity factors represents the shortest makespan. Through a TOPSIS technique-based ranking, considering makespan and cost as criteria, the study identifies the SPT rule and human productivity factors as the most efficient scenario. The findings imply that employing human productivity factors with effective dispatching rules, such as SPT, can significantly improve job shop scheduling operational efficiency and lead to more optimal results in both makespan and overall operational costs.

References

1.
H.
 
Xiong
,
S.
 
Shi
,
D.
 
Ren
, and
J.
 
Hu
, “
A Survey of Job Shop Scheduling Problem: The Types and Models
,”
Computers & Operations Research
142
(June
2022
):
105731
,
2.
C.
 
Destouet
,
H.
 
Tlahig
,
B.
 
Bettayeb
, and
B.
 
Mazari
, “
Flexible Job Shop Scheduling Problem under Industry 5.0: A Survey on Human Reintegration, Environmental Consideration and Resilience Improvement
,”
Journal of Manufacturing Systems
67
(April
2023
):
155
173
,
3.
Y.
 
An
,
X.
 
Chen
,
K.
 
Gao
,
Y.
 
Li
, and
L.
 
Zhang
, “
Multiobjective Flexible Job-Shop Rescheduling with New Job Insertion and Machine Preventive Maintenance
,”
IEEE Transactions on Cybernetics
53
, no. 
5
(May
2023
):
3101
3113
,
4.
M.
 
Mahmoodjanloo
,
R.
 
Tavakkoli-Moghaddam
,
A.
 
Baboli
, and
A.
 
Bozorgi-Amiri
, “
Distributed Job-Shop Rescheduling Problem Considering Reconfigurability of Machines: A Self-Adaptive Hybrid Equilibrium Optimiser
,”
International Journal of Production Research
60
, no. 
16
(
2022
):
4973
4994
,
5.
Y.
 
Du
,
J.
 
Li
,
C.
 
Li
, and
P.
 
Duan
, “
A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem with Crane Transportation and Setup Times
,”
IEEE Transactions on Neural Networks and Learning Systems
35
, no. 
4
(April
2024
):
5695
5709
,
6.
A. D.
 
Karaoglan
, “
Optimization of Welding Job-Shop Scheduling Problem under Variable Workstation Constraint: An Industrial Application with Arena Simulation Based Genetic Algorithm
,”
Pamukkale University Journal of Engineering Sciences
28
, no. 
1
(
2022
):
139
147
,
7.
L.
 
Cai
,
W.
 
Li
,
Y.
 
Luo
, and
L.
 
He
, “
Real-Time Scheduling Simulation Optimisation of Job Shop in a Production-Logistics Collaborative Environment
,”
International Journal of Production Research
61
, no. 
5
(
2023
):
1373
1393
,
8.
M.
 
Morady Gohareh
and
E.
 
Mansouri
, “
A Simulation-Optimization Framework for Generating Dynamic Dispatching Rules for Stochastic Job Shop with Earliness and Tardiness Penalties
,”
Computers & Operations Research
140
(April
2022
):
105650
,
9.
M. L. R.
 
Varela
,
G. D.
 
Putnik
,
V. K.
 
Manupati
,
G.
 
Rajyalakshmi
,
J.
 
Trojanowska
, and
J.
 
Machado
, “
Integrated Process Planning and Scheduling in Networked Manufacturing Systems for I4.0: A Review and Framework Proposal
,”
Wireless Networks
27
, no. 
3
(April
2021
):
1587
1599
,
10.
Z.
 
Tasheva
and
V.
 
Karpovich
, “
Supercharge Human Potential through AI to Increase Productivity the Workforce in the Companies
,”
American Journal of Applied Science and Technology
4
, no. 
2
(February
2024
):
24
29
,
11.
J. R.
 
Jorge Ulises
and
A. B.
 
Pablo José
, “
Impact of Human Factor Management on Company Productivity: The Moderating Effect of Digitalization
,”
Cogent Business & Management
11
, no. 
1
(
2024
):
2371064
,
12.
X.
 
Han
,
Y.
 
Han
,
Q.
 
Chen
,
J.
 
Li
,
H.
 
Sang
,
Y.
 
Liu
,
Q.
 
Pan
, and
Y.
 
Nojima
, “
Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved Iterated Greedy Algorithm
,”
Complex System Modeling and Simulation
1
, no. 
3
(
2021
):
198
217
,
13.
S.
 
Dauzère-Pérès
,
J.
 
Ding
,
L.
 
Shen
, and
K.
 
Tamssaouet
, “
The Flexible Job shop Scheduling Problem: A Review
,”
European Journal of Operational Research
314
, no. 
2
(April
2024
):
409
432
,
14.
M. E.
 
Leusin
,
E. M.
 
Frazzon
,
M. U.
 
Maldonado
,
M.
 
Kück
, and
M.
 
Freitag
, “
Solving the Job-Shop Scheduling Problem in the Industry 4.0 Era
,”
Technologies
6
, no. 
4
(December
2018
):
107
,
15.
S. M.
 
Sajadi
,
A.
 
Alizadeh
,
M.
 
Zandieh
, and
F.
 
Tavan
, “
Robust and Stable Flexible Job Shop Scheduling with Random Machine Breakdowns: Multi-objectives Genetic Algorithm Approach
,”
International Journal of Mathematics in Operational Research
14
, no. 
2
(
2019
):
268
289
,
16.
D.
 
Gupta
,
C. T.
 
Maravelias
, and
J. M.
 
Wassick
, “
From Rescheduling to Online Scheduling
,”
Chemical Engineering Research and Design
116
(December
2016
):
83
97
,
17.
M.
 
Kück
,
J.
 
Ehm
,
T.
 
Hildebrandt
,
M.
 
Freitag
, and
E. M.
 
Frazzon
, “
Potential of Data-Driven Simulation-Based Optimization for Adaptive Scheduling and Control of Dynamic Manufacturing Systems
,” in
2016 Winter Simulation Conference (WSC)
(
Washington, DC
:
IEEE
,
2016
),
2820
2831
, https://doi.org/10.1109/wsc.2016.7822318
18.
X.
 
Qiu
and
H. Y. K.
 
Lau
, “
An AIS-Based Hybrid Algorithm with PDRs for Multi-objective Dynamic Online Job Shop Scheduling Problem
,”
Applied Soft Computing
13
, no. 
3
(March
2013
):
1340
1351
,
19.
A.
 
Miranzadeh
,
S. M.
 
Sajadi
, and
M. M.
 
Tavakoli
, “
Simulation of a Single Product Supply Chain Model with ARENA
,”
International Journal of Industrial and Systems Engineering
19
, no. 
1
(
2015
):
18
33
,
20.
J.
 
Leng
,
D.
 
Wang
,
W.
 
Shen
,
X.
 
Li
,
Q.
 
Liu
, and
X.
 
Chen
, “
Digital Twins-Based Smart Manufacturing System Design in Industry 4.0: A Review
,”
Journal of Manufacturing Systems
60
(July
2021
):
119
137
,
21.
H.
 
Soroush
,
S. M.
 
Sajjadi
, and
S. M.
 
Arabzad
, “
Efficiency Analysis and Optimisation of a Multi-product Assembly Line Using Simulation
,”
International Journal of Productivity and Quality Management
13
, no. 
1
(
2014
):
89
104
,
22.
M. H.
 
Rad
,
S. M.
 
Sajadi
, and
M. M.
 
Tavakoli
, “
The Efficiency Analysis of a Manufacturing System by TOPSIS Technique and Simulation
,”
International Journal of Industrial and Systems Engineering
18
, no. 
2
(
2014
):
222
236
,
23.
A. J.
 
Collins
,
F. S. A.
 
Pour
, and
C. A.
 
Jordan
, “
Past Challenges and the Future of Discrete Event Simulation
,”
The Journal of Defense Modeling and Simulation
20
, no. 
3
(July
2023
):
351
369
,
24.
P.
 
Sridhar
,
C. R.
 
Vishnu
, and
R.
 
Sridharan
, “
Simulation of Inventory Management Systems in Retail Stores: A Case Study
,”
Materials Today: Proceedings
47
, Part 15 (
2021
):
5130
5134
,
25.
S.
 
Sharifi
,
S. M.
 
Sajadi
, and
M. M.
 
Tavakoli
, “
Simulation Process of Isfahan Post Office Using Arena
,”
International Journal of Services and Operations Management
17
, no. 
1
(January
2014
):
50
66
,
26.
Z.
 
Sepehri
,
S. M.
 
Arabzad
, and
S. M.
 
Sajadi
, “
Analysing the Performance of Emergency Department by Simulation: The Case of Sirjan Hospital
,”
International Journal of Services and Operations Management
20
, no. 
3
(March
2015
):
289
301
,
27.
A.
 
Reiman
,
J.
 
Kaivo-oja
,
E.
 
Parviainen
,
E.-P.
 
Takala
, and
T.
 
Lauraeus
, “
Human Factors and Ergonomics in Manufacturing in the Industry 4.0 Context–A Scoping Review
,”
Technology in Society
65
(May
2021
):
101572
,
28.
T. S.
 
Baines
,
R.
 
Asch
,
L.
 
Hadfield
,
J. P.
 
Mason
,
S.
 
Fletcher
, and
J. M.
 
Kay
, “
Towards a Theoretical Framework for Human Performance Modelling within Manufacturing Systems Design
,”
Simulation Modelling Practice and Theory
13
, no. 
6
(September
2005
):
486
504
,
29.
D.
 
Biskup
, “
A State-of-the-Art Review on Scheduling with Learning Effects
,”
European Journal of Operational Research
188
, no. 
2
(July
2008
):
315
329
,
30.
J.
 
Heger
,
S.
 
Grundstein
, and
M.
 
Freitag
, “
Online-Scheduling Using Past and Real-Time Data. An Assessment by Discrete Event Simulation Using Exponential Smoothing
,”
CIRP Journal of Manufacturing Science and Technology
19
(November
2017
):
158
163
,
You do not currently have access to this content.