ABSTRACT

In the pursuit of innovative biosensing technologies for critical applications such as early breast cancer detection, the development of efficient and portable devices is crucial. This work describes a unique stereolithography (SLA)-based three-dimensional–printed microfluidic device intended particularly for optofluidic biosensing with just microliter quantities of blood, similar to diabetes monitoring devices. Unlike typical cumbersome lab equipment such as the Biacore machine, which needs large blood sample volumes and laboratory processing, microfluidic technology allows for patient-operated, at-home testing, decreasing the requirement for hospital visits. The main contribution of this study is to optimize the SLA printing parameters, namely the exposure duration, in order to improve the microfluidic chip’s transparency and channel quality. This improvement allows for the exact immobilization of biorecognition components within the channels, resulting in sensitive and efficient biomarker detection. By extending the exposure duration, we considerably increase the structural integrity and optical clarity of the microfluidic channels, which are critical for successful biosignal transduction in labeled sensing applications. This development not only leads to a cheaper cost and faster manufacturing compared with conventional technologies but also offers increased performance in real bio-sensing applications. Thus, our work represents a big step forward in the development of accessible, efficient, and compact devices for early-stage illness diagnosis, outperforming existing lab-based diagnostics.

References

1.
M.
 
Rahman
,
M. J. N.
 
Sampad
,
A.
 
Hawkins
, and
H.
 
Schmidt
, “
Recent Advances in Integrated Solid-State Nanopore Sensors
,”
Lab on a Chip
21
, no. 
16
(August
2021
):
3030
3052
,
2.
W.-C.
 
Lee
,
H.-Y.
 
Ng
,
C.-Y.
 
Hou
,
C.-T.
 
Lee
, and
L.-M.
 
Fu
, “
Recent Advances in Lab-on-Paper Diagnostic Devices Using Blood Samples
,”
Lab on a Chip
21
, no. 
8
(April
2021
):
1433
1453
,
3.
M.
 
Symes
,
P.
 
Kitson
,
J.
 
Yan
,
C. J.
 
Richmond
,
G. J. T.
 
Cooper
,
R. W.
 
Bowman
,
T.
 
Vilbrandt
, and
L.
 
Cronin
, “
Integrated 3D-Printed Reactionware for Chemical Synthesis and Analysis
,”
Nature Chem
4
(May
2012
):
349
354
,
4.
S.
 
Dhoundiyal
,
S.
 
Srivastava
,
S.
 
Kumar
,
G.
 
Singh
,
S.
 
Ashique
,
R.
 
Pal
,
N.
 
Mishra
, and
F.
 
Taghizadeh-Hesary
, “
Radiopharmaceuticals: Navigating the Frontier of Precision Medicine and Therapeutic Innovation
,”
European Journal of Medical Research
29
(December
2024
):
26
,
5.
J.
 
Hauser
,
G.
 
Kylberg
,
M.
 
Colomb-Delsuc
,
G.
 
Stemme
,
I.-M.
 
Sintorn
, and
N.
 
Roxhed
, “
A Microfluidic Device for TEM Sample Preparation
,”
Lab on a Chip
20
, no. 
22
(November
2020
):
4186
4193
,
6.
Y.-T.
 
Wu
,
C.-E.
 
Yang
,
C.-H.
 
Ko
,
Y.-N.
 
Wang
,
C.-C.
 
Liu
, and
L.-M.
 
Fu
, “
Microfluidic Detection Platform with Integrated Micro-spectrometer System
,”
Chemical Engineering Journal
393
(August
2020
):
124700
,
7.
G.
 
Stella
,
L.
 
Saitta
,
S.
 
Moscato
,
G.
 
Cicala
, and
M.
 
Bucolo
, “
3D-Printed Micro-optofluidic Slug Flow Detector
,”
IEEE Sensors Journal
24
, no. 
12
(June
2024
):
18813
18826
,
8.
S.
 
Bilal
,
A.
 
Tariq
,
S. I.
 
Khan
,
M.
 
Liaqat
,
S.
 
Andreescu
,
H.
 
Zhang
, and
A.
 
Hayat
, “
A Review of Nanophotonic Structures in Optofluidic Biosensors for Food Safety and Analysis
,”
Trends in Food Science & Technology
147
(May
2024
):
104428
,
9.
J.
 
Park
,
D. H.
 
Han
, and
J.-K.
 
Park
, “
Towards Practical Sample Preparation in Point-of-Care Testing: User-Friendly Microfluidic Devices
,”
Lab on a Chip
20
, no. 
7
(April
2020
):
1191
1203
,
10.
S.
 
Rasheed
,
T.
 
Kanwal
,
N.
 
Ahmad
,
B.
 
Fatima
,
M.
 
Najam-ul-Haq
, and
D.
 
Hussain
, “
Advances and Challenges in Portable Optical Biosensors for Onsite Detection and Point-of-Care Diagnostics
,”
TrAC Trends in Analytical Chemistry
173
(April
2024
):
117640
,
11.
T.
 
Thirugnanasambandan
,
S.
 
Ramanathan
, and
S. C. B.
 
Gopinath
, “
Revolutionizing Biosensing through Cutting-Edge Nanomaterials: An In-Depth Exploration of Recent Technological Advances
,”
Nano-Structures & Nano-Objects
38
(May
2024
):
101128
,
12.
R.
 
Ding
,
M.
 
Fiedoruk-Pogrebniak
,
M.
 
Pokrzywnicka
,
R.
 
Koncki
,
J.
 
Bobacka
, and
G.
 
Lisak
, “
Solid Reference Electrode Integrated with Paper-Based Microfluidics for Potentiometric Ion Sensing
,”
Sensors and Actuators B: Chemical
323
(November
2020
):
128680
,
13.
J. P.
 
Lafleur
,
A.
 
Jönsson
,
S.
 
Senkbeil
, and
J. P.
 
Kutter
, “
Recent Advances in Lab-on-a-Chip for Biosensing Applications
,”
Biosensors and Bioelectronics
76
(February
2016
):
213
233
,
14.
F.-G.
 
Banica
,
Chemical Sensors and Biosensors: Fundamentals and Applications
, 1st ed. (
Hoboken, NJ
:
John Wiley & Sons
,
2012
), https://doi.org/10.1002/9781118354162
15.
S.
 
Malik
,
J.
 
Singh
,
K.
 
Saini
,
V.
 
Chaudhary
,
A.
 
Umar
,
A. A.
 
Ibrahim
,
S.
 
Akbar
, and
S.
 
Baskoutas
, “
Paper-Based Sensors: Affordable, Versatile, and Emerging Analyte Detection Platforms
,”
Analytical Methods
16
, no. 
18
(May
2024
):
2777
2809
,
16.
S.
 
Kim
,
H.
 
Song
,
H.
 
Ahn
,
T.
 
Kim
,
J.
 
Jung
,
S. K.
 
Cho
,
D.-M.
 
Shin
,
J.-R.
 
Choi
,
Y.-H.
 
Hwang
, and
K.
 
Kim
, “
A Review of Advanced Impedance Biosensors with Microfluidic Chips for Single-Cell Analysis
,”
Biosensors
11
, no. 
11
(November
2021
):
412
,
17.
J.
 
Kieda
,
A.
 
Shakeri
,
S.
 
Landau
,
E. Y.
 
Wang
,
Y.
 
Zhao
,
B. F.
 
Lai
,
S.
 
Okhovatian
,
Y.
 
Wang
,
R.
 
Jiang
, and
M.
 
Radisic
, “
Advances in Cardiac Tissue Engineering and Heart-on-a-Chip
,”
Journal of Biomedical Materials Research Part A
112
, no. 
4
(April
2024
):
492
511
,
18.
T.
 
Suryawanshi
,
R.
 
Joshi
,
S.
 
Shukla
, and
A.
 
Majumder
, “
Micro and Nanostructures in Regenerative Medicine
,” in
Nanobiotechnology
, 1st ed. (
Boca Raton, FL
:
CRC Press
,
2024
),
20
57
.
19.
S.
 
Resende
,
J.
 
Fernandes
,
P. C.
 
Sousa
,
C.
 
Calaza
,
M. F.
 
Frasco
,
P. P.
 
Freitas
, and
M. G. F.
 
Sales
, “
Fabrication and Sensing Properties of a Molecularly Imprinted Polymer on a Photonic PDMS Substrate for the Optical Detection of C-Reactive Protein
,”
Chemical Engineering Journal
485
(April
2024
):
149924
.
20.
Q.
 
Su
,
N.
 
Zhang
, and
M. D.
 
Gilchrist
, “
Precision Injection Moulding of Micro Components: Determination of Heat Transfer Coefficient and Precision Process Simulation
,”
International Journal of Mechanical Sciences
269
(May
2024
):
109065
,
21.
J.
 
Li
,
J.
 
Liu
,
F.
 
Gong
, and
G.
 
Yang
, “
Effect of Process Parameters on Filling Behavior of PMMA in Hot Embossing
,”
Microsystem Technologies
30
, no. 
7
(July
2024
):
845
858
.
22.
P.
 
Pattanayak
,
S. K.
 
Singh
,
M.
 
Gulati
,
S.
 
Vishwas
,
B.
 
Kapoor
,
D. K.
 
Chellappan
,
K.
 
Anand
, et al., “
Microfluidic Chips: Recent Advances, Critical Strategies in Design, Applications and Future Perspectives
,”
Microfluidics and Nanofluidics
25
, no. 
12
(December
2021
):
99
,
23.
M.
 
Guirardel
, “
Conception, Réalisation et Caractérisation de Biocapteurs Micromécaniques Résonants en Silicium avec Actionnement Piézoélectrique Intégré: Détection de l’Adsorption de Nanoparticules d’Or
” (PhD diss., Paul Sabatier University,
2003
).
24.
G. M.
 
Whitesides
, “
The Origins and the Future of Microfluidics
,”
Nature
442
, no. 
7101
(July
2006
):
368
373
,
25.
C.
 
Curti
,
D. J.
 
Kirby
, and
C. A.
 
Russell
, “
Systematic Screening of Photopolymer Resins for Stereolithography (SLA) 3D Printing of Solid Oral Dosage Forms: Investigation of Formulation Factors on Printability Outcomes
,”
International Journal of Pharmaceutics
653
(March
2024
):
123862
,
26.
M.
 
Gonzalez-Urquijo
,
E.
 
Hosseinzadeh
,
A.
 
Aguirre-Soto
, and
M. A.
 
Fabiani
, “
Stereolithographic (SLA) 3D Printing for Preprocedural Planning in Endovascular Aortic Repair of a Thoracic Aneurysm
,”
Vascular and Endovascular Surgery
58
, no. 
3
(April
2024
):
343
349
,
27.
M. A. M.
 
Ahmed
,
K. M.
 
Jurczak
,
N. S.
 
Lynn
Jr.
,
J.-P. S. H.
 
Mulder
,
E. M. J.
 
Verpoorte
, and
A.
 
Nagelkerke
, “
Rapid Prototyping of PMMA-Based Microfluidic Spheroid-on-a-Chip Models Using Micromilling and Vapour-Assisted Thermal Bonding
,”
Scientific Reports
14
(
2024
):
2831
,
28.
Z.
 
Qiao
, “
Research on 3D Printing Resin Exposure Properties and Its Application on Centrifugal Microfluidic Platform Based on Fluorescence Detection
” (PhD diss., Louisiana State University and Agricultural and Mechanical College,
2024
).
29.
I.
 
Burke
,
C.
 
Assies
, and
N.
 
Kockmann
, “
Rapid Prototyping of a Modular Optical Flow Cell for Image-Based Droplet Size Measurements in Emulsification Processes
,”
Journal of Flow Chemistry
14
, no. 
3
(September
2024
):
515
528
.
30.
Z.
 
Li
,
X.
 
Li
,
B.
 
Feng
,
J.
 
Zhao
,
K.
 
Liu
,
F.
 
Xie
, and
J.
 
Xie
, “
Investigation of the In Vitro Toxic Effects Induced by Real-Time Aerosol of Electronic Cigarette Solvents Using Microfluidic Chips
,”
Food and Chemical Toxicology
188
(
2024
):
114668
.
31.
H.
 
Yang
,
K.-C.
 
Cho
,
I.
 
Hong
,
Y.
 
Kim
,
Y. B.
 
Kim
,
J.-J.
 
Kim
, and
J. H.
 
Oh
, “
Influence of Circle of Willis Modeling on Hemodynamic Parameters in Anterior Communicating Artery Aneurysms and Recommendations for Model Selection
,”
Scientific Reports
14
(
2024
):
8476
,
32.
H.
 
Kirkoyun Uysal
,
M.
 
Eryildiz
, and
M.
 
Demirci
, “
Fabrication of a Microfluidic Test Device with a 3D Printer and Its Combination with the Loop Mediated Isothermal Amplification Method to Detect Streptococcus pyogenes
,”
Micromachines
15
, no. 
3
(March
2024
):
365
,
33.
A.
 
Gholivand
,
O.
 
Korculanin
,
K.
 
Dahlhoff
,
M.
 
Babaki
,
T.
 
Dickscheid
, and
M. P.
 
Lettinga
, “
Effect of In-Plane and Out-of-Plane Bifurcated Microfluidic Channels on the Flow of Aggregating Red Blood Cells
,”
Lab on a Chip
24
, no. 
8
(April
2024
):
2317
2326
,
34.
N.
 
Galanos
,
E. M.
 
Papoutsis-Kiachagias
, and
K. C.
 
Giannakoglou
, “
The Cut-Cell Method for the Conjugate Heat Transfer Topology Optimization of Turbulent Flows Using the ‘Think Discrete-Do Continuous’ Adjoint
,”
Energies
17
, no. 
8
(April
2024
):
1817
,
35.
Divyaprakash
,
M.
 
Garg
,
A.
 
Kumar
, and
A.
 
Bhattacharya
, “
A Review of Computational Modeling of Fluid-Immersed Flexible Filaments
,”
Journal of the Indian Institute of Science
104
, no. 
1
(January
2024
):
277
301
.
36.
N.
 
Basha
,
R.
 
Arcucci
,
P.
 
Angeli
,
C.
 
Anastasiou
,
T.
 
Abadie
,
C. Q.
 
Casas
,
J.
 
Chen
, et al., “
Machine Learning and Physics-Driven Modelling and Simulation of Multiphase Systems
,”
International Journal of Multiphase Flow
179
(September
2024
):
104936
,
37.
L.
 
Guo
,
J.
 
Feng
,
Z.
 
Fang
,
J.
 
Xu
, and
X.
 
Lu
, “
Application of Microfluidic ‘Lab-on-a-Chip’ for the Detection of Mycotoxins in Foods
,”
Trends in Food Science & Technology
46
, no. 
2
, Part A (December
2015
):
252
263
,
38.
Y.
 
Wang
and
M.
 
Seidel
, “
Strategy for Fast Manufacturing of 3D Hydrodynamic Focusing Multilayer Microfluidic Chips and Its Application for Flow-Based Synthesis of Gold Nanoparticles
,”
Microfluidics and Nanofluidics
25
, no. 
8
(August
2021
):
64
,
39.
K.
 
Voitiuk
,
S. T.
 
Seiler
,
M.
 
Pessoa de Melo
,
J.
 
Geng
,
S.
 
Hernandez
,
H. E.
 
Schweiger
,
J. L.
 
Sevetson
, et al., “
A Feedback-Driven IoT Microfluidic, Electrophysiology, and Imaging Platform for Brain Organoid Studies
,”
bioRxiv
preprint,
40.
A.
 
Chivate
and
C.
 
Zhou
, “
Additive Manufacturing of Micropatterned Functional Surfaces: A Review
,”
International Journal of Extreme Manufacturing
6
, no. 
4
(August
2024
):
042004
,
41.
H.
 
Shafique
,
V.
 
Karamzadeh
,
G.
 
Kim
,
M. L.
 
Shen
,
Y.
 
Morocz
,
A.
 
Sohrabi-Kashani
, and
D.
 
Juncker
, “
High-Resolution Low-Cost LCD 3D Printing for Microfluidic and Organ-on-a-Chip Devices
,”
Lab on a Chip
24
, no. 
10
(May
2024
):
2774
2790
,
42.
O. M.
 
Young
,
X.
 
Xu
,
S.
 
Sarker Sunandita
, and
R. D.
 
Sochol
, “
Direct Laser Writing-Enabled 3D Printing Strategies for Microfluidic Applications
,”
Lab on a Chip
24
, no. 
9
(May
2024
):
2371
2396
,
43.
A.
 
Di Mola
,
M. R.
 
Landi
,
A.
 
Massa
,
U.
 
D’Amora
, and
V.
 
Guarino
, “
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications
,”
International Journal of Molecular Sciences
23
, no. 
22
(November
2022
):
14372
,
44.
K. A.
 
Smith
,
S.
 
Habibi
,
M. P.
 
de Beer
,
Z. D.
 
Pritchard
, and
M. A.
 
Burns
, “
Dual-Wavelength Volumetric Stereolithography of Multilevel Microfluidic Devices
,”
Biomicrofluidics
16
, no. 
4
(July
2022
),
45.
A.
 
Johnson
,
S.
 
Reimer
,
R.
 
Childres
,
G.
 
Cupp
,
T. C. L.
 
Kohs
,
O. J. T.
 
McCarty
, and
Y.
 
Kang
, “
The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips
,”
Cellular and Molecular Bioengineering
16
, no. 1 (February
2023
):
3
21
,
46.
E.
 
Jeong
,
Y.
 
Kim
,
S.
 
Hong
,
K.
 
Yoon
, and
S.
 
Lee
, “
Innovative Injection Molding Process for the Fabrication of Woven Fabric Reinforced Thermoplastic Composites
,”
Polymers
14
, no. 
8
(April
2022
):
1577
,
You do not currently have access to this content.