Abstract

Design for circular economy (DfCE) aims to systematically incorporate circular economy (CE) considerations during the design phase. In this article, we introduce an integrated quantitative framework that concurrently assesses product functionality, CE, and sustainability performance to enable a more holistic DfCE. This framework enables coupling multiple life-cycle phase simulation models for estimating the effects of parameterized changes in a product’s design or life-cycle behavior on its CE and sustainability performance. We showcase the ability of the proposed framework to support CE- and sustainability-centric design optimization and design space exploration using a case study on a commercial flange coupling. Results show that geometric optimization, to a certain extent, can compensate for material substitution. Furthermore, we show the existence of trade-offs between the above three indicators and that optimizing the flange coupling design to reduce global warming potential results in an increase in energy intensity for the same material composition. The case study shows the potential of the presented modeling framework to provide meaningful insights for DfCE. We demonstrate that the developed framework supports DfCE by highlighting interdependencies between product life-cycle data and their influence on CE and sustainability performance, which can be difficult to assess through other means. This research facilitates the integration of circularity considerations into simulation-based design by leveraging existing engineering simulation models and provides concrete design guidance on how products can be redesigned for CE.

References

1.
Bocken
N. M. P.
,
de Pauw
I.
,
Bakker
C.
, and
van der Grinten
B.
, “
Product Design and Business Model Strategies for a Circular Economy
,”
Journal of Industrial and Production Engineering
33
, no. 
5
(July
2016
):
308
320
, https://doi.org/10.1080/21681015.2016.1172124
2.
Rockström
J.
,
Gupta
J.
,
Qin
D.
,
Lade
S. J.
,
Abrams
J. F.
,
Andersen
L. S.
,
Armstrong McKay
D. I.
, et al., “
Safe and Just Earth System Boundaries
,”
Nature
619
(
2023
):
102
111
, https://doi.org/10.1038/s41586-023-06083-8
3.
European Commission “
Circular Economy Action Plan
,”
European Commission
,
2020
, https://web.archive.org/web/20241218233540/https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
4.
Bernstein
W. Z.
,
Ramanujan
D.
,
Devanathan
S.
,
Zhao
F.
,
Ramani
K.
, and
Sutherland
J. W.
, “
Development of a Framework for Sustainable Conceptual Design
,” in
Proceedings of the 17th CIRP International Conference on Life Cycle Engineering
(
Hefei, China
:
Hefei University of Technology Press
,
2010
),
242
247
.
5.
Bovea
M. D.
and
Pérez-Belis
V.
, “
Identifying Design Guidelines to Meet the Circular Economy Principles: A Case Study on Electric and Electronic Equipment
,”
Journal of Environmental Management
228
(December
2018
):
483
494
, https://doi.org/10.1016/j.jenvman.2018.08.014
6.
Aguiar
M. F.
and
Jugend
D.
, “
Circular Product Design Maturity Matrix: A Guideline to Evaluate New Product Development in Light of the Circular Economy Transition
,”
Journal of Cleaner Production
365
(September
2022
): 132732, https://doi.org/10.1016/j.jclepro.2022.132732
7.
Aher
G.
,
Boudjadar
J.
, and
Ramanujan
D.
, “
Towards Simulation-Based Circular Product Design
,”
Procedia CIRP
116
(
2023
):
690
695
, https://doi.org/10.1016/j.procir.2023.02.116
8.
Ortner
P.
,
Tay
J. Z.
, and
Wortmann
T.
, “
Computational Optimization for Circular Economy Product Design
,”
Journal of Cleaner Production
362
(August
2022
): 132340, https://doi.org/10.1016/j.jclepro.2022.132340
9.
Mallalieu
A.
,
Martinsson Bonde
J.
,
Watz
M.
,
Wallin Nylander
J.
,
Hallstedt
S. I.
, and
Isaksson
O.
, “
Derive and Integrate Sustainability Criteria in Design Space Exploration of Additive Manufactured Components
,”
Proceedings of the Design Society
3
(
2023
):
1197
1206
, https://doi.org/10.1017/pds.2023.120
10.
Dokter
G.
,
Thuvander
L.
, and
Rahe
U.
, “
How Circular Is Current Design Practice? Investigating Perspectives across Industrial Design and Architecture in the Transition towards a Circular Economy
,”
Sustainable Production and Consumption
26
(April
2021
):
692
708
, https://doi.org/10.1016/j.spc.2020.12.032
11.
Glogic
E.
,
Sonnemann
G.
, and
Young
S. B.
, “
Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries
,”
Sustainability
13
, no. 
3
(February
2021
): 1040, https://doi.org/10.3390/su13031040
12.
Kravchenko
M.
,
McAloone
T. C.
, and
Pigosso
D. C. A.
, “
To What Extent do Circular Economy Indicators Capture Sustainability?
Procedia CIRP
90
(
2020
):
31
36
, https://doi.org/10.1016/j.procir.2020.02.118
13.
Shephard
M. S.
,
Beall
M. W.
,
O’bara
R. M.
, and
Webster
B. E.
, “
Toward Simulation-Based Design
,”
Finite Elements in Analysis and Design
40
, no. 
12
(July
2004
):
1575
1598
, https://doi.org/10.1016/j.finel.2003.11.004
14.
Lo
C. K.
,
Chen
C. H.
, and
Zhong
R. Y.
, “
A Review of Digital Twin in Product Design and Development
,”
Advanced Engineering Informatics
48
(April
2021
): 101297, https://doi.org/10.1016/j.aei.2021.101297
15.
Wu
J.
,
Qian
X.
, and
Wang
M. Y.
, “
Advances in Generative Design
,”
Computer-Aided Design
116
(November
2019
): 102733, https://doi.org/10.1016/j.cad.2019.102733
16.
Vukovic
M.
and
Weldemariam
K.
, “
Toward Agile and Resilient Manufacturing Using AI
,”
Smart and Sustainable Manufacturing Systems
4
, no. 
3
(December
2020
):
330
332
, https://doi.org/10.1520/SSMS20200068
17.
de Oliveira
C. T.
and
Oliveira
G. G. A.
, “
What Circular Economy Indicators Really Measure? An Overview of Circular Economy Principles and Sustainable Development Goals
,”
Resources, Conservation and Recycling
190
(March
2023
): 106850, https://doi.org/10.1016/j.resconrec.2022.106850
18.
Bell
S.
and
Morse
S.
, “
Sustainability Indicators Past and Present: What Next?
Sustainability
10
, no. 
5
(May
2018
): 1688, https://doi.org/10.3390/su10051688
19.
De Pascale
A.
,
Arbolino
R.
,
Szopik-Depczyńska
K.
,
Limosani
M.
, and
Ioppolo
G.
, “
A Systematic Review for Measuring Circular Economy: The 61 Indicators
,”
Journal of Cleaner Production
281
(January
2021
): 124942, https://doi.org/10.1016/j.jclepro.2020.124942
20.
Vanegas
P.
,
Peeters
J. R.
,
Cattrysse
D.
,
Tecchio
P.
,
Ardente
F.
,
Mathieux
F.
,
Dewulf
W.
, and
Duflou
J. R.
, “
Ease of Disassembly of Products to Support Circular Economy Strategies
,”
Resources, Conservation and Recycling
135
(August
2018
):
323
334
, https://doi.org/10.1016/j.resconrec.2017.06.022
21.
Nelen
D.
,
Manshoven
S.
,
Peeters
J. R.
,
Vanegas
P.
,
D’Haese
N.
, and
Vrancken
K.
, “
A Multidimensional Indicator Set to Assess the Benefits of WEEE Material Recycling
,”
Journal of Cleaner Production
83
(November
2014
):
305
316
, https://doi.org/10.1016/j.jclepro.2014.06.094
22.
Franklin-Johnson
E.
,
Figge
F.
, and
Canning
L.
, “
Resource Duration as a Managerial Indicator for Circular Economy Performance
,”
Journal of Cleaner Production
133
(October
2016
):
589
598
, https://doi.org/10.1016/j.jclepro.2016.05.023
23.
Ellen MacArthur Foundation
“Material Circularity Indicator
,”
Ellen MacArthur Foundation
,
2015
, https://web.archive.org/web/20240913165255/https://www.ellenmacarthurfoundation.org/material-circularity-indicator
24.
Wen
Z.
and
Meng
X.
, “
Quantitative Assessment of Industrial Symbiosis for the Promotion of Circular Economy: A Case Study of the Printed Circuit Boards Industry in China’s Suzhou New District
,”
Journal of Cleaner Production
90
(March
2015
):
211
219
, https://doi.org/10.1016/j.jclepro.2014.03.041
25.
Park
H.-S.
and
Behera
S. K.
, “
Methodological Aspects of Applying Eco-efficiency Indicators to Industrial Symbiosis Networks
,”
Journal of Cleaner Production
64
(February
2014
):
478
485
, https://doi.org/10.1016/j.jclepro.2013.08.032
26.
Felicio
M.
,
Amaral
D.
,
Esposto
K.
, and
Gabarrell Durany
X.
, “
Industrial Symbiosis Indicators to Manage Eco-industrial Parks as Dynamic Systems
,”
Journal of Cleaner Production
118
(April
2016
):
54
64
, https://doi.org/10.1016/j.jclepro.2016.01.031
27.
Pagotto
M.
and
Halog
A.
, “
Towards a Circular Economy in Australian Agri-food Industry: An Application of Input-Output Oriented Approaches for Analyzing Resource Efficiency and Competitiveness Potential
,”
Journal of Industrial Ecology
20
, no. 
5
(October
2016
):
1176
1186
, https://doi.org/10.1111/jiec.12373
28.
Geng
Y.
,
Liu
Y.
,
Liu
D.
,
Zhao
H.
, and
Xue
B.
, “
Regional Societal and Ecosytem Metabolism Analysis in China: A Multi-Scale Integrated Analysis of Societal Metabolism (MSIASM) Approach
,”
Energy
36
, no. 
8
(April
2011
):
4799
4808
, https://doi.org/10.1016/j.energy.2011.05.014
29.
Geng
Y.
,
Fu
J.
,
Sarkis
J.
, and
Xue
B.
, “
Towards a National Circular Economy Indicator System in China: An Evaluation and Critical Analysis
,”
Journal of Cleaner Production
23
, no. 
1
(March
2012
):
216
224
, https://doi.org/10.1016/j.jclepro.2011.07.005
30.
Chun-rong
J.
and
Jun
Z.
, “
Evaluation of Regional Circular Economy Based on Matter Element Analysis
,”
Procedia Environmental Sciences
11
, Part B (
2011
):
637
642
, https://doi.org/10.1016/j.proenv.2011.12.099
31.
Tisserant
A.
,
Pauliuk
S.
,
Merciai
S.
,
Schmidt
J.
,
Fry
J.
,
Wood
R.
, and
Tukker
A.
, “
Solid Waste and the Circular Economy: A Global Analysis of Waste Treatment and Waste Footprints
,”
Journal of Industrial Ecology
21
, no. 
3
(June
2017
):
628
640
, https://doi.org/10.1111/jiec.12562
32.
Saidani
M.
,
Yannou
B.
,
Leroy
Y.
, and
Cluzel
F.
, “
How to Assess Product Performance in the Circular Economy? Proposed Requirements for the Design of a Circularity Measurement Framework
,”
Recycling
2
, no. 
1
(March
2017
): 6, https://doi.org/10.3390/recycling2010006
33.
Jerome
A.
,
Helander
H.
,
Ljunggren
M.
, and
Janssen
M.
, “
Mapping and Testing Circular Economy Product-Level Indicators: A Critical Review
,”
Resources, Conservation and Recycling
178
(March
2022
): 106080, https://doi.org/10.1016/j.resconrec.2021.106080
34.
Moraga
G.
,
Huysveld
S.
,
Mathieux
F.
,
Blengini
G. A.
,
Alaerts
L.
,
Van Acker
K.
,
de Meester
S.
, and
Dewulf
J.
, “
Circular Economy Indicators: What do They Measure?
Resources, Conservation and Recycling
146
(July
2019
):
452
461
, https://doi.org/10.1016/j.resconrec.2019.03.045
35.
International Standards Organization “
ISO/TC 323 Circular Economy
,” International Standards Organization,
2018
, https://web.archive.org/web/20241217084946/https://www.iso.org/committee/7203984.html
36.
Ferrero
V.
,
Raman
A. S.
,
Haapala
K. R.
, and
DuPont
B.
, “
Validating the Sustainability of Eco-labeled Products Using a Triple-Bottom-Line Analysis
,”
Smart and Sustainable Manufacturing Systems
3
, no. 
1
(November
2019
):
31
52
, https://doi.org/10.1520/SSMS20190022
37.
Kravchenko
M.
,
Pigosso
D. C. A.
, and
McAloone
T. C.
, “
Towards the Ex-ante Sustainability Screening of Circular Economy Initiatives in Manufacturing Companies: Consolidation of Leading Sustainability-Related Performance Indicators
,”
Journal of Cleaner Production
241
(December
2019
): 118318, https://doi.org/10.1016/j.jclepro.2019.118318
38.
Niero
M.
and
Kalbar
P. P.
, “
Coupling Material Circularity Indicators and Life Cycle Based Indicators: A Proposal to Advance the Assessment of Circular Economy Strategies at the Product Level
,”
Resources, Conservation and Recycling
140
(January
2019
):
305
312
, https://doi.org/10.1016/j.resconrec.2018.10.002
39.
Bernstein
W. Z.
,
Tensa
M.
,
Praniewicz
M.
,
Kwon
S.
, and
Ramanujan
D.
, “
An Automated Workflow for Integrating Environmental Sustainability Assessment into Parametric Part Design through Standard Reference Models
,”
Procedia CIRP
90
(
2020
):
102
108
, https://doi.org/10.1016/j.procir.2020.02.058
40.
Gaha
R.
,
Yannou
B.
, and
Benamara
A.
, “
Selection of a Green Manufacturing Process Based on CAD Features
,”
International Journal of Advanced Manufacturing Technology
87
, nos.
5–8
(November
2016
):
1335
1343
, https://doi.org/10.1007/s00170-015-7499-y
41.
Chen
Z.
,
Tao
J.
, and
Yu
S.
, “
A Feature-Based CAD-LCA Software Integration Approach for Eco-design
,”
Procedia CIRP
61
(
2017
):
721
726
, https://doi.org/10.1016/j.procir.2016.11.228
42.
Tao
J.
,
Li
L.
, and
Yu
S.
, “
An Innovative Eco-design Approach Based on Integration of LCA, CAD\ CAE and Optimization Tools, and Its Implementation Perspectives
,”
Journal of Cleaner Production
187
(June
2018
):
839
851
, https://doi.org/10.1016/j.jclepro.2018.03.213
43.
Roci
M.
,
Salehi
N.
,
Amir
S.
,
Shoaib-ul-Hasan
S.
,
Asif
F. M. A.
,
Mihelič
A.
, and
Rashid
A.
, “
Towards Circular Manufacturing Systems Implementation: A Complex Adaptive Systems Perspective Using Modelling and Simulation as a Quantitative Analysis Tool
,”
Sustainable Production and Consumption
31
(May
2022
):
97
112
, https://doi.org/10.1016/j.spc.2022.01.033
44.
Glöser-Chahoud
S.
,
Pfaff
M.
,
Walz
R.
, and
Schultmann
F.
, “
Simulating the Service Lifetimes and Storage Phases of Consumer Electronics in Europe with a Cascade Stock and Flow Model
,”
Journal of Cleaner Production
213
(March
2019
):
1313
1321
, https://doi.org/10.1016/j.jclepro.2018.12.244
45.
Reuter
M. A.
and
van Schaik
A.
, “
Product-Centric Simulation-Based Design for Recycling: Case of LED Lamp Recycling
,”
Journal of Sustainable Metallurgy
1
, no. 
1
(March
2015
):
4
28
, https://doi.org/10.1007/s40831-014-0006-0
46.
Velázquez Martínez
O.
,
Van Den Boogaart
K. G.
,
Lundström
M.
,
Santasalo-Aarnio
A.
,
Reuter
M.
, and
Serna-Guerrero
R.
, “
Statistical Entropy Analysis as Tool for Circular Economy: Proof of Concept by Optimizing a Lithium-Ion Battery Waste Sieving System
,”
Journal of Cleaner Production
212
(March
2019
):
1568
1579
, https://doi.org/10.1016/j.jclepro.2018.12.137
47.
Hannula
J.
,
Godinho
J. R. A.
,
Abadías Llamas
A.
,
Luukkanen
S.
, and
Reuter
M. A.
, “
Simulation-Based Exergy and LCA Analysis of Aluminum Recycling: Linking Predictive Physical Separation and Re-melting Process Models with Specific Alloy Production
,”
Journal of Sustainable Metallurgy
6
, no. 
1
(March
2020
):
174
189
, https://doi.org/10.1007/s40831-020-00267-6
48.
Bal
A.
and
Badurdeen
F.
, “
A Simulation-Based Optimization Approach for Network Design: The Circular Economy Perspective
,”
Sustainable Production and Consumption
30
(March
2022
):
761
775
, https://doi.org/10.1016/j.spc.2021.12.033
49.
Ameli
M.
,
Mansour
S.
, and
Ahmadi-Javid
A.
, “
A Simulation-Optimization Model for Sustainable Product Design and Efficient End-of-Life Management Based on Individual Producer Responsibility
,”
Resources, Conservation and Recycling
140
(January
2019
):
246
258
, https://doi.org/10.1016/j.resconrec.2018.02.031
50.
Walzberg
J.
,
Carpenter
A.
, and
Heath
G. A.
, “
Exploring PV Circularity by Modeling Socio-technical Dynamics of Modules’ End-of-Life Management
,” in
2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)
(
Piscataway, NJ
:
IEEE
,
2021
),
41
43
, https://doi.org/10.1109/PVSC43889.2021.9518638
51.
Walzberg
J.
,
Frayret
J.-M.
,
Eberle
A. L.
,
Carpenter
A.
, and
Heath
G.
, “
Agent-Based Modeling and Simulation for the Circular Economy: Lessons Learned and Path Forward
,”
Journal of Industrial Ecology
27
, no. 
5
(October
2023
):
1227
1238
, https://doi.org/10.1111/jiec.13423
52.
Franco
M. A.
, “
A System Dynamics Approach to Product Design and Business Model Strategies for the Circular Economy
,”
Journal of Cleaner Production
241
(December
2019
): 118327, https://doi.org/10.1016/j.jclepro.2019.118327
53.
Lieder
M.
,
Asif
F. M. A.
,
Rashid
A.
,
Mihelič
A.
, and
Kotnik
S.
, “
Towards Circular Economy Implementation in Manufacturing Systems Using a Multi-method Simulation Approach to Link Design and Business Strategy
,”
International Journal of Advanced Manufacturing Technology
93
, nos. 
5–8
(November
2017
):
1953
1970
, https://doi.org/10.1007/s00170-017-0610-9
54.
Bosch
T.
,
Verploegen
K.
,
Grösser
S. N.
, and
van Rhijn
G.
, “
Sustainable Furniture that Grows with End-Users
,” in
Dynamics of Long-Life Assets
(
Cham, Switzerland
:
Springer
,
2017
),
303
326
, https://doi.org/10.1007/978-3-319-45438-2_16
55.
Nishino
N.
,
Kimita
K.
, and
Ito
T.
, “
Mechanism for Matching Circular Products and Customers with Top Trading Cycles
,”
CIRP Annals
71
, no. 
1
(
2022
):
5
8
, https://doi.org/10.1016/j.cirp.2022.04.007
56.
Panarotto
M.
,
Wall
J.
, and
Larsson
T.
, “
Simulation-Driven Design for Assessing Strategic Decisions in the Conceptual Design of Circular PSS Business Models
,”
Procedia CIRP
64
(
2017
):
25
30
, https://doi.org/10.1016/j.procir.2017.03.026
57.
Salwin
M.
,
Nehring
K.
,
Jacyna-Gołda
I.
, and
Kraslawski
A.
, “
Product-Service System Design–An Example of the Logistics Industry
,”
Archives of Transport
63
, no. 
3
(September
2022
):
159
180
, https://doi.org/10.5604/01.3001.0016.0820
58.
Sanchez
B.
,
Rausch
C.
,
Haas
C.
, and
Hartmann
T.
, “
A Framework for BIM-Based Disassembly Models to Support Reuse of Building Components
,”
Resources, Conservation and Recycling
175
(December
2021
): 105825, https://doi.org/10.1016/j.resconrec.2021.105825
59.
Marey
H.
,
Kozma
G.
, and
Szabó
G.
, “
Green Concrete Materials Selection for Achieving Circular Economy in Residential Buildings Using System Dynamics
,”
Cleaner Materials
11
(March
2024
): 100221, https://doi.org/10.1016/j.clema.2024.100221
60.
Porwal
A.
,
Parsamehr
M.
,
Szostopal
D.
,
Ruparathna
R.
, and
Hewage
K.
, “
The Integration of Building Information Modeling (BIM) and System Dynamic Modeling to Minimize Construction Waste Generation from Change Orders
,”
International Journal of Construction Management
23
, no. 
1
(January
2023
):
156
166
, https://doi.org/10.1080/15623599.2020.1854930
61.
Charef
R.
, “
The Use of Building Information Modelling in the Circular Economy Context: Several Models and a New Dimension of BIM (8D)
,”
Cleaner Engineering and Technology
7
(April
2022
): 100414, https://doi.org/10.1016/j.clet.2022.100414
62.
Tao
J.
,
Chen
Z.
,
Yu
S.
, and
Liu
Z.
, “
Integration of Life Cycle Assessment with Computer-Aided Product Development by a Feature-Based Approach
,”
Journal of Cleaner Production
143
(February
2017
):
1144
1164
, https://doi.org/10.1016/j.jclepro.2016.12.005
64.
Huijbregts
M. A. J.
,
Steinmann
Z. J. N.
,
Elshout
P. M. F.
,
Stam
G.
,
Verones
F.
,
Vieira
M.
,
Zijp
M.
,
Hollander
A.
, and
Van Zelm
R.
, “
ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level
,”
The International Journal of Life Cycle Assessment
22
, no. 
2
(February
2017
):
138
147
, https://doi.org/10.1007/s11367-016-1246-y
65.
Tiwari
K.
and
Arunachalam
N.
, “
Monte Carlo Method–Based Tool Life Prediction during the End Milling of Ti-6Al-4V Alloy for Smart Manufacturing
,”
Smart and Sustainable Manufacturing Systems
5
, no. 
1
(December
2021
):
264
289
, https://doi.org/10.1520/SSMS20210013
66.
Overcash
M.
and
Twomey
J.
, “
Unit Process Life Cycle Inventory (UPLCI)–A Structured Framework to Complete Product Life Cycle Studies
,” in
Leveraging Technology for a Sustainable World
(
Berlin, Germany
:
Springer
,
2021
),
1
4
, https://doi.org/10.1007/978-3-642-29069-5_1
67.
Hammiche
D.
,
Bourmaud
A.
,
Boukerrou
A.
,
Djidjelli
H.
, and
Grohens
Y.
, “
Number of Processing Cycle Effect on the Properties of the Composites Based on Alfa Fiber
,”
Journal of Thermoplastic Composite Materials
29
, no. 
9
(September
2016
):
1176
1193
, https://doi.org/10.1177/0892705714563116
68.
Fix
G. J.
,
Phase Field Methods for Free Boundary Problems
(
Pittsburgh, PA
:
Carnegie Mellon University
,
1982
).
69.
Woll
S. L. B.
and
Cooper
D. J.
, “
A Dynamic Injection-Molding Process Model for Simulating Mold Cavity Pressure Patterns
,”
Polymer-Plastics Technology and Engineering
36
, no. 
5
(
1997
):
809
840
, https://doi.org/10.1080/03602559708000662
70.
Arrhenius
S.
, “
Über die innere Reibung Verdünnter Wässeriger Lösungen
,”
Zeitschrift für Physikalische Chemie
1U
, no. 
1
(February
1887
):
285
298
, https://doi.org/10.1515/zpch-1887-0133
71.
Raoufi
K.
,
Harper
D. S.
, and
Haapala
K. R.
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Metal Injection Molding
,”
Production Engineering
14
, nos.
5–6
(December
2020
):
707
716
, https://doi.org/10.1007/s11740-020-00991-8
72.
Lee
J.-M.
,
Moon
J.-S.
,
Lee
H.
, and
Choi
B.-H.
, “
Investigation of Fatigue and Mechanical Properties of the Pipe Grade Poly (Vinyl Chloride) Using Recycled Scraps
,”
Express Polymer Letters
9
, no. 
4
(April
2015
):
362
371
, https://doi.org/10.3144/expresspolymlett.2015.34
73.
Fletcher
B. L.
and
Mackay
M. E.
, “
A Model of Plastics Recycling: Does Recycling Reduce the Amount of Waste?
Resources, Conservation and Recycling
17
, no. 
2
(August
1996
):
141
151
, https://doi.org/10.1016/0921-3449(96)01068-3
74.
MathWorks
“gamultiobj–Multi-Objective Genetic Algorithm
,”
MathWorks
,
2024
, https://web.archive.org/web/20240221150000/https://se.mathworks.com/help/gads/gamultiobj.html
75.
Ribeiro
I.
,
Peças
P.
, and
Henriques
E.
, “
Incorporating Tool Design into a Comprehensive Life Cycle Cost Framework Using the Case of Injection Molding
,”
Journal of Cleaner Production
53
(August
2013
):
297
309
, https://doi.org/https://doi.org/10.1016/j.jclepro.2013.04.025
76.
Gomes
C.
,
Thule
C.
,
Broman
D.
,
Larsen
P. G.
, and
Vangheluwe
H.
, “
Co-simulation: State of the Art
,” arXiv preprint arXiv:1702.00686,
2017
, https://web.archive.org/web/20250214133702/https://arxiv.org/abs/1702.00686
77.
Harris
S.
,
Martin
M.
, and
Diener
D.
, “
Circularity for Circularity’s Sake? Scoping Review of Assessment Methods for Environmental Performance in the Circular Economy
,”
Sustainable Production and Consumption
26
(April
2021
):
172
186
, https://doi.org/10.1016/j.spc.2020.09.018
78.
Vercalsteren
A.
,
Maarten
C.
, and
Veronique
V. H.
, “
Indicators for a Circular Economy
,”
Flanders State of Art
,
2018
, https://web.archive.org/web/20241119031908/https://circulareconomy.europa.eu/platform/sites/default/files/summa_-_indicators_for_a_circular_economy.pdf
This content is only available via PDF.
You do not currently have access to this content.