A solar chemical reactor was designed, constructed and tested for the direct thermal decomposition of zinc oxide at temperatures as high as 2250 K using concentrated sunlight. Along with the reactor, a 1-dimensional numerical model was developed to predict the reactor’s thermal performance under various solar flux levels and to identify the physio-chemical properties of ZnO that are critical for designing the reactor. An experimental study was also conducted to ascertain how best to employ a curtain of inert gas to keep the reactor’s window clean of Zn and ZnO. The reactor proved to be a reliable research tool for effecting the decomposition reaction and it possesses many features characteristic of a reactor scale-able to an industrial level: it is resilient to thermal shock; it has a low effective thermal inertia, and it can operate in a continuous mode when ZnO as a powder is fed to the reactor. Furthermore, experimental work led to insight on how best to keep the window clean in the course of an experiment. Also, comparisons between output from the numerical model and experimental results show that the solar flux and the ZnO’s thermal conductivity and emissivity are the most critical variables affecting the exergy efficiency of the reactor and the mass flux of product gases. The comparison further reveals the need to investigate whether or not the magnitude of the published pre-exponential term in the decomposition rate equation used in the numerical model should be reduced for improving agreement between the model and the experimental results.

1.
Palumbo
,
R.
,
Le´de´
,
J.
,
Boutin
,
O.
,
Ricart
,
E. E.
,
Steinfeld
,
A.
,
Mo¨ller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
,
1998
, “
The production of Zn from ZnO in a high-temperature solar decomposition quench process—I The scientific framework for the process
,”
Chem. Eng. Sci.
,
53
, pp.
2503
2517
.
2.
Fletcher
,
E. A.
, and
Noring
,
J. E.
,
1983
, “
High temperature solar electrothermal processing—zinc from zinc oxide
,”
Energy (Oxford)
,
8
, pp.
247
254
.
3.
Fletcher
,
E. A.
,
Macdonald
,
F. J.
, and
Kunnerth
,
D.
,
1985
, “
High temperature solar electrothermal processing II—zinc from zinc oxide
,”
Energy (Oxford)
,
10
, pp.
1255
1272
.
4.
Palumbo
,
R.
, and
Fletcher
,
E. A.
,
1988
, “
High temperature solar electro-thermal processing III. Zinc from zinc oxide at 1200 - 1675 K using a non-consumable anode
,”
Energy (Oxford)
,
13
, pp.
319
332
.
5.
Boutin, O., 1996, “Dissociation Thermique, suive de Trempe, de l’oxyde de zinc,” Diplome d’ Etudes Approfondies, LSGC-ENSIC, Nancy France.
6.
Mo¨ller, S., 1996, “Untersuchung der solarthermischen Dissoziation von ZnO zu Zn und O2 in einem Sonnenofen zur Speicherung von Sonnenenergie,” Diplomarbeit, Universita¨t Dortmund.
7.
Steinfeld
,
A.
,
Kuhn
,
P.
,
Reller
,
A.
,
Palumbo
,
R.
,
Murray
,
J.
, and
Tamaura
,
Y.
,
1998
, “
Solar-Processed Metals as Clean Energy Carriers and Water-Splitters
,”
Int. J. Hydrogen Energy
,
23
, pp.
767
774
.
8.
Bilgen
,
E.
,
Ducarroir
,
M.
,
Foex
,
M.
,
Sibieude
,
F.
, and
Trombe
,
F.
,
1977
, “
Use of solar energy for direct and two-step water decomposition cycles
,”
Int. J. Hydrogen Energy
,
2
, pp.
251
257
.
9.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Eichler
,
B.
, and
Reller
,
A.
,
1999
, “
The direct solar thermal dissociation of ZnO: Condensation and Crystallization of Zinc in the Presence of Oxygen
,”
Sol. Energy
65
, pp.
59
69
.
10.
Parks
,
D. J.
,
School
,
K. L.
, and
Fletcher
,
E. A.
,
1988
, “
A study of the use of Y2O3 doped ZrO2 membranes for solar electrothermal and solar thermal Separations
,”
Energy (Oxford)
,
13
, pp.
121
136
.
11.
Fletcher
,
E. A.
,
1999
, “
Solarthermal and solar quasi-electrolytic processing and separtions: Zinc from zinc oxide as an example
,”
Ind. Eng. Chem. Res.
,
39
, pp.
2275
2282
.
12.
Haueter
,
P.
,
Seitz
,
T.
, and
Steinfeld
,
A.
,
1999
, “
A new high-flux solar furnace for high temperature thermo-chemical research
,”
ASME J. Sol. Energy Eng.
,
121
, pp.
77
80
.
13.
Tschudi
,
H. R.
, and
Schubnell
,
M.
,
1999
, “
Measuring temperatures in the presence of external radiation flash assisted multiwavelength pyrometry
,”
Rev. Sci. Instrum.
,
70
, pp.
2719
2727
.
14.
Hirschwald
,
W.
, and
Stolze
,
F.
,
1972
, “
Kinetics of the thermal dissociation of zinc oxide
,”
Z. Phys. Chem., Neue Folge
77
, pp.
21
42
.
15.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter: Thermal Conductivity, IFI/Plenum, New York-Washington.
16.
Martin
,
L. P.
,
Dadom
,
D.
,
Rosen
,
M.
,
Birman
,
A.
,
Gershon
,
D.
,
Calame
,
J. P.
,
Levush
,
B.
, and
Carmel
,
Y.
,
1996
, “
Temperature Gradients and Residual Porosity in Microwave Sintered Zinc Oxide
,”
Mater. Res. Soc. Symp. Proc.
,
430
, pp.
579
584
.
17.
Barin, I., 1995, Thermochemical Data of Pure Substances, 3. Auflage, VCH, Weinheim.
18.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A solar chemical reactor for co-production of zinc and synthesis gas
,”
Energy (Oxford)
,
23
, pp.
803
814
.
You do not currently have access to this content.