An analysis of 1970–2005 observed summer daily maximum and minimum temperatures in two California air basins showed concurrent daytime coastal cooling and inland warming. To study the impacts of these results on energy consumption, summer cooling degree day (CDD) and winter heating degree day (HDD) trends were analyzed via these temperatures. The 2 m level air temperatures consisted of data from 159 locations in California, each with daily minimum and maximum values. Primary data sources included Cooperative Weather Station Network sites, first order National Weather Service stations, and military weather stations. An analysis of the CDD and HDD data has been undertaken for California, in general, and the San Francisco Bay Area and South Coast Air Basin, in particular, as the source of data for an analysis of energy-demand trends. Regional climate fluctuations have considerable effects on surface temperatures, which in turn affect CDD and HDD values. An asymmetric increase in summer CDD values between coastal and inland regions of California was found during the last 35 years, while winter HDD values showed decreases in most of California. In general, coastal areas experienced decreases of CDD, while inland regions experienced increases. The summer asymmetric increases in CDD is attributed to intensified sea breeze flows, which suggests increases in cold marine air intrusions over coastal land masses due to an increased regional sea breeze potential, which ventilates coastal areas, helps reduce maximum temperatures, and contributes to CDD decreases. An analysis of energy demands in the two air basins supports these climatological findings.

1.
Lebassi
,
B. H.
,
González
,
J. E.
,
Fabris
,
D.
,
Maurer
,
E.
,
Miller
,
N. L.
,
Milesi
,
C.
, and
Bornstein
,
R.
, 2009, “
Observed 1970–2005 Cooling of Summer Daytime Temperatures in Coastal California
,”
J. Climate
0894-8755,
22
, pp.
3558
3573
.
2.
Thom
,
H. S. C.
, 1952, “
Seasonal Degree Day Statistics for the United States
,”
Mon. Weather Rev.
0027-0644,
80
, pp.
143
149
.
3.
Thom
,
H. S. C.
, 1954, “
The Rational Relationship Between Heating Degree Days and Temperature
,”
Mon. Weather Rev.
0027-0644,
82
, pp.
1
6
.
4.
Thom
,
H. S. C.
, 1966, “
Normal Degree Days Above Any Base by the Universal Truncation Coefficient
,”
Mon. Weather Rev.
0027-0644,
94
, pp.
461
465
.
5.
Landsberg
,
H. E.
, 1976, “
The Definitions of Determination of Climatic Changes, Fluctuations and Outlooks
,”
Papers of the Second Carolina Geographical Symposium: Atmospheric Quality and Climatic Change
,
R. J.
Kopec
, ed., University of North Carolina, Chapel Hill.
6.
Downton
,
M. W.
,
Stewart
,
T. R.
, and
Miller
,
K. A.
, 1988, “
Estimating Historical Heating and Cooling Needs. Per Capita Degree Days
,”
J. Appl. Meteorol.
0021-8952,
27
, pp.
84
90
.
7.
Quayle
,
R. G.
, and
Diaz
,
H. F.
, 1980, “
Heating Degree Day Data Applied to Residential Heating Energy Consumption
,”
J. Appl. Meteorol.
0021-8952,
19
, pp.
241
246
.
8.
Diaz
,
H. F.
, and
Holle
,
R. D.
, 1984, “
The Relative Effects of U.S. Population Shifts (1930–1980) on Potential Heating, Cooling and Water Demand
,”
J. Appl. Meteorol.
0021-8952,
23
, pp.
445
448
.
9.
Rosenthal
,
D. H.
,
Gruenspecht
,
H. K.
, and
Moran
,
E. A.
, 1995, “
Effects of Global Warming on Energy Use for Space Heating and Cooling in the United States
,”
Energy J.
,
16
, pp.
77
96
.
10.
Warren
,
H. E.
, and
LeDuc
,
S. K.
, 1981, “
Impact of Climate on Energy Sector in Economic Analysis
,”
J. Appl. Meteorol.
0021-8952,
20
, pp.
1431
1439
.
11.
Morrison
,
W. N.
, and
Mendelsohn
,
R.
, 1999, “
The Impact of Global Warming on U.S. Energy Expenditures
,”
R.
Mendelsohn
and
J.
Neumann
, eds.,
The Economic Impact of Climate Change on the United States Economy
,
Cambridge University Press
,
New York
, pp.
209
236
.
12.
Loveland
,
J. E.
, and
Brown
,
G. Z.
, 1990, “
Impacts of Climate Change on the Energy Performance of Buildings in the United States
,” U.S. Congress, Office of Technology Assessment, Washington, DC, OTA/UW/UO, Contract J3-4825.0.
13.
Huang
,
Y. J.
, 2006, “
The Impact of Climate Change on the Energy Use of the U.S. Residential and Commercial Building Sectors
,”
Lawrence Berkeley National Laboratory
, Report No. LBNL-60754.
14.
Belzer
,
D. B.
,
Scott
,
M. J.
, and
Sands
,
R. D.
, 1996, “
Climate Change Impacts on U.S. Commercial Building Energy Consumption: An Analysis Using Sample Survey Data
,”
Energy Sources
0090-8312,
18
, pp.
177
201
.
15.
Scott
,
M. J.
,
Hadley
,
D. L.
, and
Wrench
,
L. E.
, 1994, “
Effects of Climate Change on Commercial Building Energy Demand
,”
Energy Sources
0090-8312,
16
, pp.
339
354
.
16.
Morris
,
M.
, 1999, “
The Impact of Temperature Trends on Short-Term Energy Demand
,” Energy Information Administration (EIA).
17.
Le Comte
,
D. M.
, and
Warren
,
H. E.
, 1981, “
Modeling the Impact of Summer Temperatures on National Electricity Consumption
,”
J. Appl. Meteorol.
0021-8952,
20
, pp.
1415
1419
.
18.
Lam
,
J. C.
, 1998, “
Climatic and Economic Influences on Residential Electricity Consumption
,”
Energy Convers. Manage.
0196-8904,
39
, pp.
623
629
.
19.
Miller
,
N. L.
,
Hayhoe
,
K.
,
Jin
,
J. M.
, and
Auffhammer
,
M.
, 2008, “
Climate, Extreme Heat and Energy Demand in California
,”
J. Appl. Meteorol.
0021-8952,
47
, pp.
1834
1844
.
20.
Franco
,
G.
, and
Sanstad
,
A.
, 2008, “
Climate Change and Electricity Demand in California
,”
Clim. Change
0165-0009,
87
(Suppl. 1), pp.
S139
S151
.
21.
Franco
,
G.
, 2005, “
Climate Change Impacts and Adaptation in California
,” California Energy Commission, Report No. CEC-500-2005-103-SD.
22.
Edwards
,
A.
, 1991,
Global Warming From an Energy Perspective, Global Climate Change And California
,
University of California Press
,
Berkeley
, Chap. 8.
23.
Darmstadter
,
J.
, 1993, “
Climate Change Impacts on the Energy Sector and Possible Adjustments in the MINK Region
,”
Clim. Change
0165-0009,
24
, pp.
117
129
.
25.
Baxter
,
L. W.
, and
Calandri
,
K.
, 1992, “
Global Warming and Electricity Demand: A Study of California
,”
Energy Policy
0301-4215,
20
, pp.
233
244
.
26.
Ruth
,
M.
, and
Amato
,
A. D.
, 2005, “
Regional Energy Demand Responses to Climate Change: Methodology and Applications to the Commonwealth of Massachusetts
,”
Clim. Change
0165-0009,
70
, pp.
175
201
.
27.
Christenson
,
M.
,
Manz
,
H.
, and
Gyalistras
,
D.
, 2006, “
Climate Warming Impact on Degree-Days and Building Energy Demand in Switzerland
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
671
686
.
28.
Frank
,
T.
, 2005, “
Climate Change Impacts on Building Heating and Cooling Energy Demand in Switzerland
,”
Energy Build.
0378-7788,
37
, pp.
1175
1185
.
29.
Angeles
,
M.
, and
Gonzalez
,
J. E.
, 2006, “
Characterization of Climatological Cooling Degree-Days in the Caribbean Region
,”
Proceedings of ANES/ASME Solar Joint 2006 30th Mexican National Solar Energy Week Conference
, Veracruz, Mexico.
30.
ASHREA
, American Society of Heating, Refrigeration, and Air Conditioning Engineers, 1997, Proposed Guidelines 14P, Measurement of Energy Demands and Savings, ASHRAE, Atlanta, GA.
32.
Mitchell
,
J. M.
,
Felch
,
R. E.
,
Gilman
,
D. L.
,
Quinlan
,
F. T.
, and
Rotty
,
R. M.
, 1974, “
Variability of Seasonal Total Heating Fuel Demand in the United States
,” Environ. Data Service, Jan. 5–9.
33.
Lehman
,
R. L.
, and
Warren
,
H. E.
, 1978, “
Residential Natural Gas Consumption: Evidence That Conservation Efforts to Date Have Failed
,”
Science
0036-8075,
199
, pp.
879
882
.
34.
Guttman
,
N. B.
, 1983, “
Variability of Population-Weighted Seasonal Heating Degree Days
,”
J. Clim. Appl. Meteorol.
0733-3021,
22
, pp.
495
501
.
35.
Koomey
,
J.
, and
Brown
,
R. E.
, 2002, “
The Role of Building Technologies for Reducing and Controlling Peak Electricity Demand
,”
Lawrence Berkeley National Laboratory
, Report No. LBNL-49947.
36.
Bakun
,
A.
, 1990, “
Global Climate Change and Intensification of Coastal Ocean Upwelling
,”
Science
0036-8075,
247
, pp.
198
201
.
37.
McGregor
,
H. V.
,
Dima
,
M.
,
Fischer
,
H. W.
, and
Mulitzal
,
S.
, 2007, “
Rapid 20th-Century Increase in Coastal Upwelling off Northwest Africa
,”
Science
0036-8075,
315
, pp.
637
639
.
38.
Hickey
,
B. M.
, 1979, “
The California Current System-Hypotheses and Facts
,”
Prog. Oceanogr.
0079-6611,
8
, pp.
191
279
.
39.
Herbert
,
T. D.
, and
Schuffert
,
J. D.
, 2001, “
Collapse of the California Current During Glacial Maxima Linked to Climate Change on Land
,”
Science
0036-8075,
293
, pp.
71
76
.
40.
Gilliland
,
R. P.
, 1980, “
The Structure and Development of the California Heat Trough
,” MS thesis, Department of Meteorology, San Jose State University, San Jose, CA.
41.
Simpson
,
J. J.
, 1983, “
Large-Scale Thermal Anomalies in the California Current During the 1982–1983 El Ninio
,”
Geophys. Res. Lett.
0094-8276,
10
, pp.
937
940
.
42.
Williams
,
W. A.
, and
DeMandel
,
R. E.
, 1966, “
Land-Sea Boundary Effects on Small Scale Circulations
,” San Jose State College Meteorology Department Research Report.
43.
Giorgis
,
R. B.
, 1983, “
Meteorological Influences on Oxidant Distribution and Transport in the Sacramento Valley
,” Ph.D. thesis, University of California, Davis, CA.
44.
Miller
,
N. L.
, and
Schlegel
,
N. J.
, 2006, “
Climate Change Projected Fire Weather Sensitivity: California Santa Ana Wind Occurrence
,”
Geophys. Res. Lett.
0094-8276,
33
, p.
L15711
.
45.
Root
,
H. E.
, 1960, “
San Francisco: The Air Conditioned City
,”
Weatherwise
0043-1672,
13
, pp.
47
54
.
46.
Blumenthal
,
D. L.
,
Smith
,
T. B.
,
Lehrman
,
D. E.
,
Rasmussen
,
R. A.
,
Whitten
,
G. Z.
, and
Bazter
,
R. A.
, 1985, “
Southern San Joaquin Valley Ozone Study
,” Sonoma Technology Inc. Final Report.
47.
Seaman
,
N. L.
,
Stauffer
,
D. R.
, and
Lario-Gibbs
,
A. M.
, 1995, “
A Multiscale Four-Dimensional Data Assimilation System Applied in the San Joaquin Valley During SARMAP. Part I: Modeling Design and Basic Performance Characteristics
,”
J. Appl. Meteorol.
0021-8952,
34
, pp.
1739
1761
.
48.
McElroy
,
J. L.
, and
Smith
,
T. B.
, 1991, “
Lidar Descriptions of Mixing-Layer Thickness Characteristics in a Complex Terrain/Coastal Environment
,”
J. Appl. Meteorol.
0021-8952,
30
, pp.
585
597
.
49.
Boucouvala
,
D.
,
Bornstein
,
R.
,
Wilkinson
,
J.
, and
Miller
,
D.
, 2003, “
MM5 Simulations of a SCOS97-NARSTO Episode
,”
Atmos. Environ.
1352-2310,
37
, pp.
95
117
.
50.
Duffy
,
P. B.
,
Bonfils
,
C.
, and
Lobell
,
D.
, 2007, “
Interpreting Recent Temperature Trends in California
,”
EOS Trans. Am. Geophys. Union
0096-3941,
88
, pp.
409
410
.
51.
Nemani
,
R. R.
,
White
,
M. A.
,
Cayan
,
D. R.
,
Jones
,
G. V.
,
Running
,
S. W.
, and
Coughlan
,
J. C.
, 2001, “
Asymmetric Warming Over Coastal California and Its Impact on the Premium Wine Industry
,”
Clim. Res.
0936-577X,
19
, pp.
25
34
.
52.
Ebbesmeyer
,
C.
,
Cayan
,
D.
,
McLain
,
D.
,
Nichols
,
F.
,
Peterson
,
D.
, and
Redmond
,
K.
, 1990, “
1976 Step in the Pacific Climate: Forty Environmental Changes Between 1968–1975 and 1977–1984
,”
Proceedings of the Seventh Annual Pacific Climate (PACLIM) Workshop
, Technical Report 26,
J.
Betancourt
and
V.
Tharp
, eds.,
California Dept. Water Resources
,
Sacramento, CA
, pp.
115
126
.
53.
Trenberth
,
K.
, and
Hoar
,
T.
, 1997, “
El Nino and Climate Change
,”
Geophys. Res. Lett.
0094-8276,
24
, pp.
3057
3060
.
54.
McGowan
,
J. A.
,
Cayan
,
D. R.
, and
Dorman
,
L. M.
, 1998, “
Climate-Ocean Variability and Ecosystem Response in the Northeast Pacific
,”
Science
0036-8075,
281
, pp.
210
217
.
55.
Wigley
,
T. M. L.
,
Santer
,
B. D.
, and
Lanzante
,
J. R.
, 2006, “
Temperature Trends in the Lower Atmosphere; Appendix A: Statistical Issues Regarding Trends
,” http://www. climatescience.gov /Library/sap/sap1-1/third-draft/sap1-1-draft3-appA.pdfhttp://www. climatescience.gov /Library/sap/sap1-1/third-draft/sap1-1-draft3-appA.pdf
56.
Falvey
,
M.
, and
Garreaud
,
R. D.
, 2009, “
Regional Cooling in a Warming World: Recent Temperature Trends in the Southeast Pacific and Along the West Coast of Subtropical South America (1979–2006)
,”
J. Geophys. Res.
0148-0227,
114
, p.
D04102
.
You do not currently have access to this content.