In this study, both energy and exergy analyses and sustainability assessment of a thermal energy storage system with a solar-ground coupled heat pump installed in a 120m2 house are performed. The actual operating data taken from the literature are utilized for model validation. The system considered here mainly consists of a solar collection system, an underground thermal storage system, an indoor air conditioning system, and a data collection system. First, energy analysis is employed to the system and its components, and the rates of energy input (solar radiation), energy storage, collector heat loss, and other heat loss are found to be 4.083 kW, 1.753 kW, 1.29 kW, and 1.04 kW for a 5 h working time, respectively, while the energy efficiency of the system is calculated to be 42.94%. Exergy analysis of the entire system is then conducted for various reference temperatures varying from 0°C to 25°C with a temperature interval of 5°C. As a result of this analysis, the rates of the maximum exergy input, exergy storage, and exergy losses are determined for a reference temperature of 0°C to be 0.585 kW, 0.24 kW, and 0.345 kW, respectively. Finally, the maximum exergy efficiency of the system is obtained to be 40.99% and the maximum sustainable development using sustainability index, which is a function of exergy efficiency, is calculated to be 1.6946 for a reference temperature of 0°C. Furthermore, the energy and exergy results are illustrated through Sankey (energy flow) and Grassmann (exergy loss and flow) diagrams.

1.
MacPhee
,
A.
, and
Dincer
,
I.
, 2009, “
Thermodynamic Analysis of Freezing and Melting Processes in a Bed of Spherical PCM Capsules
,”
ASME J. Sol. Energy Eng.
0199-6231,
131
(
3
), pp.
1
11
.
2.
MacPhee
,
D.
, and
Dincer
,
I.
, 2009, “
Heat Transfer and Thermodynamic Analyses of Some Typical Encapsulated Ice Geometries During Discharging Process
,”
ASME J. Heat Transfer
0022-1481,
131
, pp.
1
15
.
3.
Dincer
,
I.
, 2004, “
Thermal Energy Storage
,”
Encyclopedia of Energy
,
Elsevier Science
, Vol.
6
, pp.
65
78
.
4.
Wang
,
H.
,
Qi
,
C.
,
Wang
,
E.
, and
Zhao
,
J.
, 2009, “
A Case Study of Underground Thermal Storage in a Solar-Ground Coupled Heat Pump System for Residential Buildings
,”
Renewable Energy
0960-1481,
34
, pp.
307
314
.
5.
Caliskan
,
H.
,
Tat
,
M. E.
, and
Hepbasli
,
A.
, 2009, “
Performance Assessment of an Internal Combustion Engine at Varying Dead (Reference) State Temperatures
,”
Appl. Therm. Eng.
1359-4311,
29
, pp.
3431
3436
.
6.
Tsatsaronis
,
G.
, 2007, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
0360-5442,
32
, pp.
249
253
.
7.
Caliskan
,
H.
,
Tat
,
M. E.
, and
Hepbasli
,
A.
, 2010, “
A Review on Exergetic Analysis and Assessment of Various Types of Engines
,”
Int. J. Exergy
1742-8297,
7
(
3
), pp.
287
310
.
8.
Moran
,
M. J.
, 1982,
Availability Analysis: A Guide to Efficiency Energy Use
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Bose
,
J. E.
,
Ledbetter
,
C. W.
, and
Partin
,
J. R.
, 1979, “
Experimental Results of a Low Cost Solar-Assisted Heat Pump System Using Earth Coil and Geo-Thermal Well Storage
,”
Proceedings of the Fourth Annual Heat Pump Technology Conference
, Stillwater, Oklahoma State University.
10.
Gabrielsson
,
E.
, 1988, “
Seasonal Storage of Thermal Energy-Swedish Experience
,”
ASME J. Sol. Energy Eng.
0199-6231,
110
(
3
), pp.
202
207
.
11.
Oliveti
,
G.
, and
Arcuri
,
N.
, 1995, “
Prototype Experimental Plan for the Interseasonal Storage of Solar Energy for the Winter Heating of Buildings: Description of Plant and Its Function
,”
Sol. Energy
0038-092X,
54
(
2
), pp.
85
97
.
12.
Yumrutas
,
R.
, and
Unsal
,
M.
, 2000, “
Analysis of Solar Aided Heat Pump Systems With Seasonal Thermal Energy Storage in Surface Tank
,”
Energy
0360-5442,
25
(
12
), pp.
1231
1243
.
13.
Oliveti
,
G.
,
Arcuri
,
N.
, and
Ruffolo
,
S.
, 2000, “
Effect of Climatic Variability on the Performance of Solar Plants With Inter-Seasonal Storage
,”
Renewable Energy
0960-1481,
19
(
1–2
), pp.
235
241
.
14.
Ozgener
,
O.
, and
Hepbasli
,
A.
, 2005, “
Experimental Performance Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System
,”
Energy Build.
0378-7788,
37
(
1
), pp.
101
110
.
15.
Ozgener
,
O.
, and
Hepbasli
,
A.
, 2005, “
Performance Analysis of a Solar Assisted Ground-Source Heat Pump System for Greenhouse Heating: An Experimental Study
,”
Build. Environ.
0360-1323,
40
(
8
), pp.
1040
1050
.
16.
Yang
,
W.
,
Shi
,
M.
, and
Dong
,
H.
, 2006, “
Numerical Simulation of the Performance of a Solar-Earth Source Heat Pump System
,”
Appl. Therm. Eng.
1359-4311,
26
(
17–18
), pp.
2367
2376
.
17.
Trillat-Berdal
,
V.
,
Souyri
,
B.
, and
Achard
,
G.
, 2007, “
Coupling of Geothermal Heat Pumps With Thermal Solar Collector
,”
Appl. Therm. Eng.
1359-4311,
27
(
10
), pp.
1750
1755
.
18.
Ermis
,
K.
,
Erek
,
A.
, and
Dincer
,
I.
, 2007, “
Heat Transfer Analysis of Phase Change Process in a Finned-Tube Thermal Energy Storage System Using Artificial Neural Network
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3163
3175
.
19.
Erek
,
A.
, and
Dincer
,
I.
, 2008, “
An Approach to Entropy Analysis of a Latent Heat Storage Module
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
1077
1085
.
20.
Bakan
,
K.
,
Dincer
,
I.
, and
Rosen
,
M. A.
, 2008, “
Exergoeconomic Analysis of Glycol Cold Thermal Energy Storage Systems
,”
Int. J. Energy Res.
0363-907X,
32
, pp.
215
225
.
21.
MacPhee
,
D.
, and
Dincer
,
I.
, 2009, “
Thermal Modeling of a Packed Bed Thermal Energy Storage System During Charging
,”
Appl. Therm. Eng.
1359-4311,
29
, pp.
695
705
.
22.
Erek
,
A.
, and
Dincer
,
I.
, 2009, “
Numerical Heat Transfer Analysis of Encapsulated Ice Thermal Energy Storage System With Variable Heat Transfer Coefficient in Downstream
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
851
859
.
23.
MacPhee
,
D.
, and
Dincer
,
I.
, 2009, “
Performance Assessment of Some Ice TES Systems
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
2288
2299
.
24.
Novo
,
A. V.
,
Bayon
,
J. R.
,
Castro-Fresno
,
D.
, and
Rodriguez-Hernandez
,
J.
, 2010, “
Review of Seasonal Heat Storage in Large Basins: Water Tanks and Gravel–Water Pits
,”
Appl. Energy
0306-2619,
87
, pp.
390
397
.
25.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
, 2010, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
1364-0321,
14
, pp.
31
55
.
26.
Medrano
,
M.
,
Gil
,
A.
,
Martorell
,
I.
,
Potau
,
X.
, and
Cabeza
,
L. F.
, 2010, “
State of the Art on High-Temperature Thermal Energy Storage for Power Generation. Part 2—Case Studies
,”
Renewable Sustainable Energy Rev.
1364-0321,
14
, pp.
56
72
.
27.
Badescu
,
V.
, and
Sicre
,
B.
, 2003, “
Renewable Energy for Passive House Heating: II. Model
,”
Energy Build.
0378-7788,
35
(
11
), pp.
1085
1096
.
28.
Mather
,
D. W.
,
Holland
,
K. G. T.
, and
Wright
,
J. L.
, 2002, “
Single- and Multi-Tank Energy Storage for Solar Heating Systems: Fundamentals
,”
Sol. Energy
0038-092X,
73
(
1
), pp.
3
13
.
29.
Eskilson
,
P.
, 1987, “
Thermal Analysis of Heat Extraction Boreholes
,” Ph.D. thesis, University of Lund, Lund, Sweden.
30.
Yavuzturk
,
C.
,
Spitler
,
J. D.
, and
Ree
,
S. J.
, 1999, “
A Short Time Step Response Factor Model for Vertical Ground Loop Heat Exchangers
,”
ASHRAE Trans.
0001-2505,
105
(
2
), pp.
475
485
.
31.
Mawire
,
A.
,
McPherson
,
M.
, and
van den Heetkamp
,
R. R. J.
, 2008, “
Simulated Energy and Exergy Analyses of the Charging of an Oil-Pebble Bed Thermal Energy Storage System for a Solar Cooker
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
92
, pp.
1668
1676
.
32.
Öztürk
,
H. H.
, and
Başçetinçelik
,
A.
, 2003, “
Energy and Exergy Efficiency of a Packed-Bed Heat Storage Unit for Greenhouse Heating
,”
Biosyst. Eng.
1537-5110,
86
, pp.
231
245
.
33.
Rosen
,
M. A.
,
Dincer
,
I.
, and
Kanoglu
,
M.
, 2008, “
Role of Exergy in Increasing Efficiency and Sustainability and Reducing Environmental Impact
,”
Energy Policy
0301-4215,
36
, pp.
128
137
.
34.
Caliskan
,
H.
, and
Hepbasli
,
A.
, 2011, “
Exergy Cost Analysis and Sustainability Assessment of an Internal Combustion Engine
,”
Int. J. Exergy
1742-8297, Paper No. IJEX-8305, in press.
35.
Rosen
,
M. A.
,
Dincer
,
I.
, and
Pedinelli
,
N.
, 2000, “
Thermodynamic Performance of Ice Thermal Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
0195-0738,
122
, pp.
205
211
.
You do not currently have access to this content.