In this paper, four key design parameters with a strong influence on the performance of a high-solidity variable pitch vertical axis wind turbine (VAWT) operating at low tip-speed-ratio (TSR) are addressed. To this aim, a numerical approach, based on a finite-volume discretization of two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (URANS) equations, on a multiple sliding mesh, is proposed and validated against experimental data. The self-pitch VAWT design is based on a straight-blade Darrieus wind turbine with blades that are allowed to pitch around a feathering axis, which is also parallel to the axis of rotation. The pitch angle amplitude and periodic variation are dynamically controlled by a four-bar linkage system. We only consider the efficiency at low and intermediate TSR; therefore, the pitch amplitude is chosen to be a sinusoidal function with a considerable amplitude. The results of this parametric analysis will contribute to define the guidelines for building a full-size prototype of a small-scale wind turbine of increased efficiency.

References

1.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1419
1434
.
2.
Pope
,
K.
,
Dincer
,
I.
, and
Naterer
,
G.
,
2010
, “
Energy and Exergy Efficiency Comparison of Horizontal and Vertical Axis Wind Turbines
,”
Renewable Energy
,
35
(
9
), pp.
2102
2113
.
3.
Xisto
,
C. M.
,
Pascoa
,
J. C.
,
Leger
,
J.
, and
Trancossi
,
M.
,
2014
, “
Wind Energy Production Using an Optimized Variable Pitch Vertical Axis Rotor
,”
ASME
Paper No. IMECE2014-38966.
4.
Benedict
,
M.
,
Lakshminarayan
,
V.
,
Pino
,
J.
, and
Chopra
,
I.
,
2015
, “
Aerodynamics of a Small-Scale Vertical-Axis Wind Turbine With Dynamic Blade Pitching
,”
AIAA J.
, (in press).
5.
Madsen
,
H.
, and
Lundgren
,
K.
,
1980
,
The Voith-Schneider Wind Turbine: Some Theoretical and Experimental Results on the Aerodynamics of the Voith-Schneider Wind Turbine
,
Institute of Industrial Constructions and Energy Technology, Aalborg University Centre
,
Aalborg, Denmark
.
6.
Pawsey
,
N. C. K.
,
2002
, “
Development and Evaluation of Passive Variable-Pitch Vertical Axis Wind Turbines
,” Ph.D. thesis, University of New South Wales, Sydney, NSW.
7.
Duquette
,
M. M.
, and
Visser
,
K. D.
,
2003
, “
Numerical Implications of Solidity and Blade Number on Rotor Performance of Horizontal-Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
425
432
.
8.
Mohamed
,
M.
,
2012
, “
Performance Investigation of H-Rotor Darrieus Turbine With New Airfoil Shapes
,”
Energy
,
47
(
1
), pp.
522
530
.
9.
Roh
,
S.-C.
, and
Kang
,
S.-H.
,
2013
, “
Effects of a Blade Profile, the Reynolds Number, and the Solidity on the Performance of a Straight Bladed Vertical Axis Wind Turbine
,”
J. Mech. Sci. Technol.
,
27
(
11
), pp.
3299
3307
.
10.
Chougule
,
P.
, and
Nielsen
,
S.
,
2014
, “
Overview and Design of Self-Acting Pitch Control Mechanism for Vertical Axis Wind Turbine Using Multi Body Simulation Approach
,”
J. Phys. Conf. Ser.
,
524
(
1
), p.
012055
.
11.
Ahmadi-Baloutaki
,
M.
,
Carriveau
,
R.
, and
Ting
,
D. S.-K.
,
2014
, “
Straight-Bladed Vertical Axis Wind Turbine Rotor Design Guide Based on Aerodynamic Performance and Loading Analysis
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
7
), pp.
742
759
.
12.
Tjiu
,
W.
,
Marnoto
,
T.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2015
, “
Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus {VAWT} Configurations
,”
Renewable Energy
,
75
, pp.
50
67
.
13.
Leger
,
J. A.
,
Páscoa
,
J. C.
, and
Xisto
,
C. M.
,
2015
, “
Analytical Modeling of a Cyclorotor in Hovering State
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
12
), pp.
2163
2177
.
14.
Hwang
,
S.
,
Min
,
Y.
,
Lee
,
H.
, and
Kim
,
J.
,
2008
, “
Development of a Four-Rotor Cyclocopter
,”
J. Aircr.
,
45
(
6
), pp.
2151
2157
.
15.
Benedict
,
M.
,
2010
, “
Fundamental Understanding of the Cycloidal-Rotor Concept for Micro Air Vehicle Applications
,” Ph.D. thesis, University of Maryland, College Park, MD.
16.
Benedict
,
M.
,
Ramasamy
,
M.
, and
Chopra
,
I.
,
2010
, “
Improving the Aerodynamic Performance of Micro-Air-Vehicle-Scale Cycloidal Rotor: An Experimental Approach
,”
J. Aircr.
,
47
(
4
), pp.
1117
1125
.
17.
Benedict
,
M.
,
Jarugumilli
,
T.
, and
Chopra
,
I.
,
2013
, “
Effect of Rotor Geometry and Blade Kinematics on Cycloidal Rotor Hover Performance
,”
J. Aircr.
,
50
(
5
), pp.
1340
1352
.
18.
Xisto
,
C. M.
,
Páscoa
,
J. C.
,
Leger
,
J. A.
,
Masarati
,
P.
,
Quaranta
,
G.
,
Morandini
,
M.
,
Gagnon
,
L.
,
Schwaiger
,
M.
, and
Wills
,
D.
,
2014
, “
Numerical Modelling of Geometrical Effects in the Performance of a Cycloidal Rotor
,”
11th World Conference on Computational Mechanics
(
WCCM XI
), Barcelona, Spain, July 20-25, p.
1848
.
19.
ANSYS
, “
ANSYS Fluent Theory Guide
,”
ANSYS, Inc.
,
Canonsburg, PA
.
20.
Xisto
,
C. M.
,
Páscoa
,
J. C.
,
Abdollahzadeh
,
M.
,
Leger
,
J. A.
,
Schwaiger
,
M.
, and
Wills
,
D.
,
2014
, “
PECyT—Plasma Enhanced Cycloidal Thruster
,”
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Cleveland, OH, July 28–30,
AIAA
Paper No. 2014-3854.
21.
Xisto
,
C. M.
,
Pascoa
,
J. C.
, and
Leger
,
J.
,
2014
, “
Cycloidal Rotor Propulsion System With Plasma Enhanced Aerodynamics
,”
ASME
Paper No. IMECE2014-38291.
22.
Gagnon
,
L.
,
Quaranta
,
G.
,
Morandini
,
M.
,
Masarati
,
P.
,
Lanz
,
M.
,
Xisto
,
C. M.
, and
Pascoa
,
J. C.
,
2014
, “
Aerodynamic and Aeroelastic Analysis of a Cycloidal Rotor
,”
AIAA
Paper No. 2014-2450.
23.
Trancossi
,
M.
,
Dumas
,
A.
,
Xisto
,
C. M.
,
Páscoa
,
J. C.
, and
Andrisani
,
A.
,
2014
, “
Roto-Cycloid Propelled Airship Dimensioning and Energetic Equilibrium
,”
SAE
Paper No. 2014-01-2107.
24.
Hansen
,
M. O.
, and
Sørerensen
,
D. N.
,
2001
, “
CFD Model for Vertical Axis Wind Turbine
,”
European Wind Energy Conference and Exhibition
(
EWEC '01
),
Copenhagen
,
Denmark
, July 2–7.
25.
Edwards
,
J. M.
,
Angelo Danao
,
L.
, and
Howell
,
R. J.
,
2012
, “
Novel Experimental Power Curve Determination and Computational Methods for the Performance Analysis of Vertical Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031008
.
26.
Ferreira
,
C. J. S.
,
Bijl
,
H.
,
van Bussel
,
G.
, and
van Kuik
,
G.
,
2007
, “
Simulating Dynamic Stall in a 2D VAWT: Modeling Strategy, Verification and Validation With Particle Image Velocimetry Data
,”
J. Phys. Conf. Ser.
,
75
(
1
), p.
012023
.
27.
Ferreira
,
C. J. S. A.
,
van Zuijlen
,
A.
,
Bijl
,
H.
,
van Bussel
,
G.
, and
van Kuik
,
G.
,
2010
, “
Simulating Dynamic Stall in a Two-Dimensional Vertical-Axis Wind Turbine: Verification and Validation With Particle Image Velocimetry Data
,”
Wind Energy
,
13
(
1
), pp.
1
17
.
28.
Ferreira
,
C. J. S. A.
,
van Bussel
,
G. J. W.
,
van Kuik
,
G. A. M.
, and
Scarano
,
F.
,
2011
, “
On the Use of Velocity Data for Load Estimation of a VAWT in Dynamic Stall
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011006
.
29.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.
30.
Sanyer
,
W.
,
2011
, “
The Development of a Wind Turbine for Residential Use
,” Master's thesis, North Carolina State University, Raleigh, NC.
31.
Goett
,
H. J.
, and
Bullivant
,
W. K.
,
1938
, “
Tests of NAC A 0009, 0012, and 0018 Airfoils in the Full-Scale Tunnel
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Technical Report No. 647.
You do not currently have access to this content.