A volumetric solar receiver for superheating evaporated sulfuric acid is developed as part of a 100 kW pilot plant for the hybrid sulfur (HyS) cycle. The receiver, which uses silicon carbide foam as a heat transfer medium, heats evaporated sulfuric acid using concentrated solar energy to temperatures of 1000 °C or greater, which are required for the downstream catalytic reaction to split sulfur trioxide into oxygen and sulfur dioxide. Multiple parallel approaches for modeling and analysis of the receiver are used to design the prototype. Focused numerical modeling and thermodynamic analysis are applied to answer individual design and performance questions. Numerical simulations focused on fluid flow are used to determine the best arrangement of inlets, while thermodynamic analysis is used to evaluate the optimal dimensions and operating parameters. Finally, a numerical fluid mechanics and heat transfer model is used to predict the temperature field within the receiver. Important lessons from the modeling efforts are given, and their impacts on the design of a prototype are discussed.

References

1.
Brecher
,
L. E.
,
Spewock
,
S.
, and
Warde
,
C. J.
,
1977
, “
The Westinghouse Sulfur Cycle for the Thermochemical Decomposition of Water
,”
Int. J. Hydrogen Energy
,
2
(
1
), pp.
7
15
.
2.
Kolb
,
G. J.
, and
Diver
,
R. B.
,
2008
, “
Screening Analysis of Solar Thermochemical Hydrogen Concepts
,” Sandia National Laboratories, Albuquerque, NM,
Report No. SAND2008-1900
.
3.
Broggi
,
A.
,
Langenkamp
,
H.
,
Mertel
,
G.
, and
van Velzen
,
D.
,
1982
, “
Decomposition of Sulfuric Acid by the Cristina Process: A Status Report
,” Hydrogen Energy Progress IV: Proceedings of the World Hydrogen Energy Conference IV, Pasadena, CA, June 13–17,
T. N.
Veziroglu
,
W. D.
Van Vorst
, and
J. H.
Kelley
,
Pergamon Press
,
Oxford, UK
, pp.
611
621
.
4.
Kolb
,
G.
,
Diver
,
R. B.
, and
Siegel
,
N.
,
2007
, “
Central-Station Solar Hydrogen Power Plant
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
179
183
.
5.
General Atomics
,
1985
, “
Decomposition of Sulfuric Acid Using Solar Thermal Energy
,” Report No. GA-A17573.
6.
General Atomics
,
1986
, “
High-Pressure Catalytic Metal Reactor in a Simulated Solar Central Receiver
,” Technical Report No. GA-A18285.
7.
Roeb
,
M.
,
Monnerie
,
N.
,
Houaijia
,
A.
,
Thomey
,
D.
, and
Sattler
,
C.
,
2013
, “
Solar Thermal Water Splitting
,”
Renewable Hydrogen Technologies
,
L. M.
Gandía
,
G.
Arzamendi
, and
P. M.
Diéguez
, eds.,
Elsevier
,
Amsterdam, The Netherlands
.
8.
Thomey
,
D.
,
de Oliveira
,
L.
,
Säck
,
J. P.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2012
, “
Development and Test of a Solar Reactor for Decomposition of Sulphuric Acid in Thermochemical Hydrogen Production
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16615
16622
.
9.
Ávila-Marín
,
A. L.
,
2011
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.
10.
Veeraragavan
,
A.
,
Lenert
,
A.
,
Yilbas
,
B.
,
Al-Dini
,
S.
, and
Wang
,
E. N.
,
2012
, “
Analytical Model for the Design of Volumetric Solar Flow Receivers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
556
564
.
11.
Ahlbrink
,
N.
,
Belhomme
,
B.
, and
Pitz-Paal
,
R.
,
2009
, “
Modeling and Simulation of a Solar Tower Power Plant With Open Volumetric Air Receiver
,”
7th Modelica Conference
, Como, Italy, Sept. 20–22, pp.
685
693
.
12.
Skocypec
,
R. D.
,
Boehm
,
R. F.
, and
Chavez
,
J. M.
,
1988
, “
Heat Transfer Modeling of the IEA/SSPS Volumetric Receiver
,”
ASME J. Sol. Energy Eng.
,
111
(
2
), pp.
138
143
.
13.
Muir
,
J. F.
,
Hogan
,
R. E.
,
Skocypec
,
R. D.
, and
Buck
,
R.
,
1993
, “
The CAESAR Project: Experimental and Modeling Investigations of Methane Reforming in a Catalytically Enhanced Solar Absorption Receiver on a Parabolic Dish
,”
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND92-2131.
14.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Coupled Radiation and Flow Modeling in Ceramic Foam Volumetric Solar Air Receivers
,”
Sol. Energy
,
85
(
9
), pp.
2374
2385
.
15.
Villafán-Vidales
,
H. I.
,
Abanades
,
S.
,
Caliot
,
C.
, and
Romero-Paredes
,
H.
,
2011
, “
Heat Transfer Simulation in a Thermochemical Solar Reactor Based on a Volumetric Porous Receiver
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3377
3386
.
16.
Hischier
,
I.
,
Hess
,
D.
,
Lipiński
,
W.
,
Modest
,
M.
, and
Steinfeld
,
A.
,
2010
, “
Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power Via Combined Cycles
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041002
.
17.
He
,
Y. L.
,
Cheng
,
Z. D.
,
Cui
,
F. Q.
,
Li
,
Y.
, and
Li
,
D.
,
2012
, “
Numerical Investigations on a Pressurized Volumetric Receiver: Solar Concentrating and Collecting Modeling
,”
Renewable Energy
,
44
, pp.
368
379
.
18.
Crocker
,
A.
, and
Miller
,
F.
,
2011
, “
Coupled Fluid Flow and Radiative Modeling for a Small Particle Solar Receiver
,”
AIAA
Paper No. 2011-5902.
19.
Becker
,
M.
,
Fend
,
Th.
,
Hoffschmidt
,
B.
,
Pitz-Paal
,
R.
,
Reutter
,
O.
,
Stamatov
,
V.
,
Steven
,
M.
, and
Trimis
,
D.
,
2005
, “
Theoretical and Numerical Investigation of Flow Stability in Porous Materials Applied as Volumetric Solar Receivers
,”
Sol. Energy
,
80
(
10
), pp.
1241
1248
.
20.
Roeb
,
M.
,
Thomey
,
D.
,
Graf
,
D.
,
Sattler
,
C.
,
Poitou
,
S.
,
Pra
,
F. D. B.
,
Tochon
,
P.
,
Mansilla
,
C. C.
,
Robin
,
J. C.
,
LeNaour
,
F.
,
Allen
,
R. W. K.
,
Elder
,
R. H.
,
Atkin
,
I.
,
Karagiannakis
,
G.
,
Agrafiotis
,
C.
,
Konstandopoulos
,
A. G.
,
Musella
,
M.
,
Hähner
,
P.
,
Giaconia
,
A.
,
Sau
,
S.
,
Tarquini
,
P.
,
Haussener
,
S.
,
Steinfeld
,
A.
,
Martinez
,
S.
,
Canadas
,
I.
,
Orden
,
A.
,
Ferrato
,
M.
,
Hinkley
,
J. T.
,
Lahoda
,
E.
, and
Wong
,
B.
,
2011
, “
Hycycles: A Project on Nuclear and Solar Hydrogen Production by Sulphur-Based Thermochemical Cycles
,”
Int. J. Nucl. Hydrogen Prod. Appl.
,
2
(
3
), pp.
202
226
.
21.
Noglik
,
A.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2011
, “
Modeling of a Solar Receiver-Reactor for Sulfur-Based Thermochemical Cycles for Hydrogen Generation
,”
Int. J. Energy Res.
,
35
(
5
), pp.
449
458
.
22.
Haussener
,
S.
,
Thomey
,
D.
,
Roeb
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Multi-Scale Modeling of a Solar Reactor for the High-Temperature Step of a Sulphur-Iodine-Based Water Splitting Cycle
,”
ASME
Paper No. HT2012-58323.
23.
Noglik
,
A.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2011
, “
Numerical Analysis of Operation Conditions and Design Aspects of a Sulfur Trioxide Decomposer for Solar Energy Conversion
,”
Int. J. Energy Res.
,
36
(
6
), pp.
798
808
.
24.
Schwan
,
S. P.
,
2014
, “
Strömungssimulation Solarreceiver. Optimierung der Einströmung in den Solarreceiver des Sol2Hy2-Projekts
,” Master's project report, Cologne University of Applied Sciences, Cologne, Germany.
25.
Fend
,
T.
,
Hoffschmidt
,
B.
,
Pitz-Paal
,
R.
,
Reutter
,
O.
, and
Rietbrock
,
P.
,
2002
, “
Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical Properties
,”
Energy
,
29
(
5–6
), pp.
823
833
.
26.
Chase
,
M. W.
,
1998
, “
NIST-JANAF Thermochemical Tables
,”
J. Phys. Chem.
Ref. Data, Mongraph 9.
27.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
,
San Diego, CA
.
28.
Heraeus
, “
Standard Optics Information: HOQ 310
,” Last accessed May 12, 2014, http://optics.heraeus-quarzglas.com/media/webmedia_local/datenbltter/O434M_HOQ.pdf
29.
Liessmann
,
G.
,
Schmidt
,
W.
, and
Reiffarth
,
S.
,
1995
,
Data Compilation of the Sächsische Olefinwerke
, Sächsische Olefinwerke AG, Böhlen, Germany.
30.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Sherwood
,
T. K.
,
1987
,
The Properties of Gases and Liquids
, 4th ed.,
McGraw-Hill
,
New York
.
31.
Wassiljewa
,
A.
,
1904
, “
Wärmeleitung in Gasgemischen
,”
Physik Z
,
5
(
22
), pp.
737
742
.
32.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.
33.
Jang
,
B.-K.
, and
Sakka
,
Y.
,
2007
, “
Thermophysical Properties of Porous SiC Ceramics Fabricated by Pressureless Sintering
,”
Sci. Technol. Adv. Mater.
,
8
(
7–8
), pp.
655
659
.
34.
Patnaik
,
P.
,
2002
,
Handbook of Inorganic Chemicals
,
McGraw-Hill
,
New York
.
35.
Haussener
,
S.
,
2010
, “
Tomography-Based Determination of Effective Heat and Mass Transport Properties of Complex Multi-Phase Media
,”
Ph.D. thesis
, ETH Zurich, Zurich, Switzerland.
You do not currently have access to this content.