While solar thermal power plants are increasingly gaining attention and have demonstrated their applications, extending electricity generation after the sunset using phase change material (PCM) still remains a grand challenge. Most of the organic PCMs are known to possess high energy density per unit volume, but low thermal conductivity, that necessitates the use of thermal conductivity enhancers (TCEs) to augment heat transfer within PCM. In this paper, thermal performance and optimization of shell and tube heat exchanger-based latent heat thermal energy storage system (LHTES) using fins as TCE for medium temperature (<300 °C) organic Rankine cycle (ORC)-based solar thermal plant are presented. A commercial grade organic PCM, A164 with melting temperature of 168.7 °C is filled in the shell side and heat transfer fluid (HTF), Hytherm 600 flows through the tubes. A three-dimensional numerical model using enthalpy technique is developed to study the solidification of PCM, with and without fin. Further, the effect of geometrical parameters of fin, such as fin thickness, fin height, and number of fin on the thermal performance of LHTES, is studied. It is found that fin thickness and number of fin play significant role on the solidification process of PCM. Finally, the optimum design of the fin geometry is determined by maximizing the combined objective of HTF outlet temperature and solid fraction of PCM at the end of the discharging period. The latent heat thermal storage system with 24 fins, each of 1 mm thickness and 7 mm height, is found to be the optimum design for the given set of operating parameters.

References

1.
Fan
,
Z.
,
Infante Ferreira
,
C. A.
, and
Mosaffa
,
A. H.
,
2014
, “
Numerical Modelling of High Temperature Latent Heat Thermal Storage for Solar Application Combining With Double-Effect H2O/LiBr Absorption Refrigeration System
,”
Sol. Energy
,
110
, pp.
398
409
.
2.
Hasnain
,
S.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies—Part I: Heat Storage Materials and Techniques
,”
Energy Conserv. Manage.
,
39
(
11
), pp.
1127
1138
.
3.
Trp
,
A.
,
2005
, “
An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Sol. Energy
,
79
(
6
), pp.
648
660
.
4.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2013
, “
Thermal Stability of Phase Change Materials Used in Latent Heat Energy Storage Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
246
258
.
5.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1597
1615
.
6.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of The Art on High Temperature Thermal Energy Storage for Power Generation—Part 1: Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.
7.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.
8.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
9.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
10.
Tong
,
X.
,
Khan
,
J. A.
, and
Amin
,
M. R.
,
1996
, “
Enhancement of Heat Transfer by Inserting a Metal Matrix Into a Phase Change Material
,”
Numer. Heat Transfer Part A
,
30
(
2
), pp.
125
141
.
11.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
,
2005
, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energy Convers. Manage.
,
46
(
6
), pp.
847
867
.
12.
Zhang
,
J.
,
Zhang
,
X.
,
Wan
,
Y.
,
Mei
,
D.
, and
Zhang
,
B.
,
2012
, “
Preparation and Thermal Energy Properties of Paraffin/Halloysite Nanotube Composite as Form-Stable Phase Change Material
,”
Sol. Energy
,
86
(
5
), pp.
1142
1148
.
13.
Pincemin
,
S.
,
Py
,
X.
,
Olives
,
R.
,
Christ
,
M.
, and
Oettinger
,
O.
,
2007
, “
Elaboration of Conductive Thermal Storage Composites Made of Phase Change Materials and Graphite for Solar Plant
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
011005
.
14.
Fukai
,
J.
,
Kanou
,
M.
,
Kodama
,
Y.
, and
Miyatake
,
O.
,
2000
, “
Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers
,”
Energy Convers. Manage.
,
41
(
14
), pp.
1543
1556
.
15.
Hamada
,
Y.
,
Ohtsu
,
W.
, and
Fukai
,
J.
,
2003
, “
Thermal Response in Thermal Energy Storage Material Around Heat Transfer Tubes: Effect of Additives on Heat Transfer Rates
,”
Sol. Energy
,
75
(
4
), pp.
317
328
.
16.
Sigel
,
R.
,
1977
, “
Solidification of Low Conductivity Material Containing Dispersed High Conductivity Particles
,”
Int. J. Heat Mass Transfer
,
20
(
10
), pp.
1087
1089
.
17.
Mettawee
,
E. S.
, and
Assassa
,
G. M. R.
,
2007
, “
Thermal Conductivity Enhancement in a Latent Heat Storage System
,”
Sol. Energy
,
81
(
7
), pp.
839
845
.
18.
Regin
,
F.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2009
, “
An Analysis of a Packed Bed Latent Heat Thermal Energy Storage System Using PCM Capsules: Numerical Investigation
,”
Appl. Energy
,
34
(
7
), pp.
1765
1773
.
19.
Zhao
,
W.
,
Neti
,
S.
, and
Oztekin
,
A.
,
2013
, “
Heat Transfer Analysis of Encapsulated Phase Change Materials
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
143
151
.
20.
Nithyanandam
,
K.
,
Pitchumani
,
R.
, and
Mathur
,
A.
,
2014
, “
Analysis of a Latent Thermocline Storage System With Encapsulated Phase Change Materials for Concentrating Solar Power
,”
Appl. Energy
,
113
, pp.
1446
1460
.
21.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1999
, “
Heat Transfer Enhancement in a Latent Heat Storage System
,”
Sol. Energy
,
65
(
3
), pp.
171
180
.
22.
Sasaguchi
,
K.
, and
Takeo
,
H.
,
1994
, “
Effect of the Orientation of a Finned Surface on the Melting of Frozen Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
13
26
.
23.
Ismail
,
K. A. R.
,
Alves
,
C. L. F.
, and
Modesto
,
M. S.
,
2001
, “
Numerical and Experimental Study on the Solidification of PCM Around a Vertical Axially Finned Isothermal Cylinder
,”
Appl. Therm. Eng.
,
21
(
1
), pp.
53
77
.
24.
Liu
,
Z.
,
Sun
,
X.
, and
Ma
,
C.
,
2005
, “
Experimental Investigations on the Characteristics of Melting Processes of Stearic Acid in an Annulus and Its Thermal Conductivity Enhancement by Fins
,”
Energy Convers. Manage.
,
46
(
6
), pp.
959
969
.
25.
Ermis
,
K.
,
Erek
,
A.
, and
Dincer
,
I.
,
2007
, “
Heat Transfer Analysis of Phase Change Process in a Finned-Tube Thermal Energy Storage System Using Artificial Neural Network
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3163
3175
.
26.
Zhang
,
Y.
, and
Faghri
,
A.
,
1996
, “
Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using the Internally Finned Tube
,”
Int. J. Heat Mass Transfer
,
39
(
15
), pp.
3165
3173
.
27.
Agyenim
,
F.
,
Eames
,
P.
, and
Smyth
,
M.
,
2009
, “
A Comparison of Heat Transfer Enhancement in a Medium Temperature Thermal Energy Storage Heat Exchanger Using Fins
,”
Sol. Energy
,
83
(
9
), pp.
1509
1520
.
28.
Lamberg
,
P.
, and
Siren
,
K.
,
2003
, “
Approximate Analytical Model for Solidification in a Finite PCM Storage With Internal Fins
,”
Appl. Math. Model.
,
27
(
7
), pp.
491
513
.
29.
Mosaffa
,
A.
,
Talati
,
F.
,
Rosen
,
M. A.
, and
Tabrizi
,
H. B.
,
2013
, “
Phase Change Material Solidification in a Finned Cylindrical Shell Thermal Energy Storage: An Approximate Analytical Approach
,”
Therm. Sci.
,
17
(
2
), pp.
407
418
.
30.
Stritih
,
U
.,
2004
, “
An Experimental Study of Enhanced Heat Transfer in Rectangular PCM Storage
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2841
2847
.
31.
Rahimi
,
M.
,
Ranjbar
,
A. A.
,
Ganji
,
D. D.
,
Sedighi
,
K.
, and
Hosseini
,
M. J.
,
2014
, “
Experimental Investigation of Phase Change Inside a Finned.-Tube Heat Exchanger
,”
J. Eng.
,
2014
, p.
641954
.
32.
Jmal
,
I.
, and
Baccar
,
M.
,
2015
, “
Numerical Study of PCM Solidification in A Finned Tube Thermal Storage Including Natural Convection
,”
Appl. Therm. Eng.
,
84
, pp.
320
330
.
33.
Hosseini
,
M. J.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2014
, “
Experimental and Computational Evolution of a Shell and Tube Heat Exchanger as a PCM Thermal Storage System
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
128
136
.
34.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Numerical Study of PCM Solidification in a Triplex Tube Heat Exchanger With Internal and External Fins
,”
Int. J. Heat Mass Transfer
,
61
, pp.
684
695
.
35.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1997
, “
Experimental Analysis and Numerical Modelling of Inward Solidification on a Finned Vertical Tube for a Latent Heat Storage Unit
,”
Sol. Energy
,
60
(
5
), pp.
281
290
.
36.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2011
, “
Analysis and Optimization of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4596
4610
.
37.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Optimization of an Encapsulated Phase Change Material Thermal Energy Storage System
,”
Sol. Energy
,
107
, pp.
770
788
.
38.
Hindustan Petroleum
, 2014, “
Heat Transfer Fluids
,” Hindustan Petroleum Ltd, Bangalore, India, http://hpcl-lube.co.in/heat-transfer-fluids.html
39.
AZoM, 2001, “Stainless Steel—Grade 316 (UNS S31600),” http://www.azom.com/properties.aspx?articleid=863
40.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy–Porosity Technique for Modelling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer Part B
,
13
(
3
), pp.
297
318
.
41.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
42.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
43.
Fluent
,
2012
, “
ANSYS/FLUENT Release Version 14
,”
ANSYS, Inc.
,
Canonsburg, PA
.
44.
Nayak
,
K. C.
,
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2006
, “
A Numerical Model for Heat Sinks With Phase Change Materials and Thermal Conductivity Enhancer
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1833
1844
.
You do not currently have access to this content.