A high-temperature, high-pressure solar receiver was designed as part of the advanced thermal energy storage project carried out in collaboration with Abengoa Solar NT at CSIRO Energy Centre in Newcastle, Australia, with support through the Australian Renewable Energy Agency (ARENA). The cavity-type receiver with tubular absorbers was successfully installed and commissioned, using concentrated solar energy to raise the temperature of CO2 gas to 750 °C at 700 kPa in a pressurized, closed loop system. Stand-alone solar receiver tests were carried out to investigate the thermal characteristics of the 250 kWt solar receiver. The on-sun full-load test successfully achieved an outlet gas temperature of 750 °C while operating below the maximum allowable tube temperature limit (1050 °C) and with a maximum pressure drop of 22 kPa. The corresponding estimated receiver thermal efficiency values at full flow rate were 75% estimated based on measured receiver temperatures and heat losses calculations for both single aim-point and multiple aim-point heliostat control strategies. The use of a quartz glass window affixed to the receiver cavity aperture was tried as a means for improving the receiver efficiency by reducing convective heat losses from the receiver aperture. However, while it did appear to significantly reduce convective losses, a more effective metal support frame design is necessary to avoid damage to the window caused by stresses introduced as a result of distortion of the supports due to heating by the spillage of rays from the heliostat field.

References

1.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Reuven
,
R.
,
Taragan
,
E.
,
Duchan
,
S.
, and
Karni
,
J.
,
2001
, “
Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1200 °C
,”
ASME J. Sol. Energy Eng.
,
123
(
1
), pp.
10
17
.
2.
Heller
,
P.
,
Pfander
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
.
3.
Grange
,
B.
,
Ferrière
,
A.
,
Bellard
,
D.
,
Vrinat
,
M.
,
Couturier
,
R.
,
Pra
,
F.
, and
Fan
,
Y.
,
2010
, “
Thermal Performances of a High Temperature Air Solar Absorber Based on Compact Heat Exchange Technology
,”
ASME J. Sol. Energy Eng.
,
133
(3), p.
031004
.
4.
Amsbeck
,
L.
,
Denk
,
T.
,
Ebert
,
M.
,
Gertig
,
C.
,
Heller
,
P.
,
Herrmann
,
P.
,
Jedamski
,
J.
,
John
,
J.
,
Pitz-Paal
,
R.
,
Prosinečki
,
T.
,
Rehn
,
J.
,
Reinalter
,
W.
, and
Uhlig
,
R.
,
2010
, “
Test of a Solar-Hybrid Microturbine System and Evaluation of Storage Deployment
,”
SolarPACES Conference
, Perpignan, France, Sept. 21–24, pp. 1–8.
5.
Nakatani
,
H.
,
Tagawa
,
M.
, and
Osada
,
T.
,
2010
, “
Development of Concentrated Solar Brayton Power Generation System
,” Renewable Energy, Yokohama, Japan, June 27–July 2.
6.
Quero
,
M.
,
Korzynietz
,
R.
,
Ebert
,
M.
,
Jimenez
,
A. A.
,
del Rio
,
A.
, and
Brioso
,
J. A.
,
2014
, “
Solugas—Operation Experience of the First Solar Hybrid Gas Turbine System at MW Scale
,”
Energy Procedia
,
49
, pp.
1820
1830
.
7.
Afrin
,
S.
,
Ortega
,
J. D.
,
Ho
,
C. K.
, and
Kumar
,
V.
,
2014
, “
Modeling of a High-Temperature-Serpentine External Tubular Receiver Using Supercritical CO2
,”
ASME
Paper No. ES2014-6376.
8.
Ho
,
C. K.
,
Conboy
,
T.
,
Ortega
,
J. D.
,
Afrin
,
S.
,
Christian
,
J. M.
,
Bandyopadyay
,
S.
,
Kedare
,
S. B.
,
Singh
,
S.
, and
Wani
,
P.
,
2014
, “
High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles
,”
ASME
Paper No. ES2014-6328.
9.
Ortega
,
J. D.
,
Khivsara
,
S. D.
,
Christian
,
J. M.
, and
Ho
,
C. K.
,
2015
, “
Design Requirements for Direct Supercritical Carbon Dioxide Receiver Development and Testing
,”
ASME
Paper No. ES2015-49489.
10.
Klarstrom
,
D. L.
,
2001
, “
The Development of Haynes 230 Alloy
,”
Materials Design Approaches and Experiences
,
J. C.
Zhao
,
M.
Fahrmann
, and
T. M.
Pollock
, eds.,
TMS
,
Warrendale, PA
, pp.
297
307
.
11.
Olivares
,
R.
,
Stein
,
W.
, and
Marvig
,
P.
,
2013
, “
Thermogravimetric Study of Oxidation-Resistant Alloys for High-Temperature Solar Receivers
,”
J. Miner. Met. Mater. Soc.
,
65
(
12
), pp.
1660
1669
.
12.
Amsbeck
,
L.
,
Helsch
,
G.
,
Röger
,
M.
, and
Uhlig
,
R.
,
2009
, “
Development of a Broadband Antireflection Coated Transparent Silica Window for a Solar-Hybrid Microturbine System
,”
SolarPACES Conference
, Berlin, Germany, Sept. 15–18.
13.
Leibfried
,
U.
, and
Ortjohann
,
J.
,
1995
, “
Convective Heat Loss From Upward and Downward-Facing Cavity Solar Receivers: Measurements and Calculations
,”
ASME J. Sol. Energy Eng.
,
117
(
2
), pp.
75
84
.
14.
Samanes
,
J.
,
Garcia-Barberena
,
J.
, and
Zaversky
,
F.
,
2015
, “
Modeling Solar Cavity Receivers: A Review and Comparison of Natural Convection Heat Loss Correlations
,”
Energy Procedia
,
69
, pp.
543
552
.
You do not currently have access to this content.