In this paper, a theoretical model of solar chimney power plants (SCPPs) is presented based on compressible ideal gas law assumptions. The theoretical optimal turbine pressure drop factors (TPDFs) for constant and nonconstant densities (CD and NCD) are studied, and the effects of flow area parameters examined. Results show that the theoretical optimal TPDF for CD is equal to 2/3 and is independent of the flow area parameters. Results also show that the theoretical optimal TPDF for NCD is close to 1 and is affected by the flow area parameters. However, the theoretical maximum fluid power (MFP) obtained for NCD is never attained in real life. For the actual states, the theoretical optimal TPDF for NCD is still effectively high enough. The TPDF and the fluid power for NCD increase with the reduction of the collector inlet area, and more precisely with the reduction of the chimney inlet area. The TPDF and the fluid power definitely increase with larger chimney flow area. The increase in the fluid power due to shape optimization of the SCPP is limited compared to that due to higher input heat flux of collector. Divergent-top and upward slanting roof shapes are recommended for the solar chimney and the solar collector, respectively, for better SCPP performance. Additionally, locations exposed to strong solar radiation are preferred for SCPPs.

References

1.
Zhou
,
X. P.
, and
Xu
,
Y. Y.
,
2016
, “
Solar Updraft Tower Power Generation
,”
Sol. Energy
,
128
, pp.
95
125
.
2.
Zhou
,
X. P.
,
Wang
,
F.
, and
Ochieng
,
R. M.
,
2010
, “
A Review of Solar Chimney Power Technology
,”
Renewable Sustainable Energy Rev.
,
14
(
8
), pp.
2315
2338
.
3.
Von Backström
,
T. W.
, and
Gannon
,
A. J.
,
2000
, “
Compressible Flow Through Solar Power Plant Chimneys
,”
ASME J. Sol. Energy Eng.
,
122
(
3
), pp.
138
145
.
4.
Gannon
,
A. J.
, and
von Backström
,
T. W.
,
2000
, “
Solar Chimney Cycle Analysis With System Loss and Solar Collector Performance
,”
ASME J. Sol. Energy Eng.
,
122
(
3
), pp.
133
137
.
5.
Von Backström
,
T. W.
,
Bernhardt
,
A.
, and
Gannon
,
A. J.
,
2003
, “
Pressure Drop in Solar Power Plant Chimneys
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
165
169
.
6.
Von Backström
,
T. W.
,
2003
, “
Calculation of Pressure and Density in Solar Power Plant Chimneys
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
127
129
.
7.
Pretorius
,
J. P.
, and
Kröger
,
D. G.
,
2006
, “
Solar Chimney Power Plant Performance
,”
ASME J. Sol. Energy Eng.
,
128
(
3
), pp.
302
311
.
8.
Zhou
,
X. P.
,
Yang
,
J. K.
,
Xiao
,
B.
,
Hou
,
G. X.
, and
Wu
,
Y. Y.
,
2009
, “
Numerical Investigation of a Compressible Flow Through a Solar Chimney
,”
Heat Transfer Eng.
,
30
(
8
), pp.
670
676
.
9.
Zhou
,
X. P.
,
Bernardes
,
M. A. D. S.
, and
Ochieng
,
R. M.
,
2012
, “
Influence of Atmospheric Cross Flow on Solar Updraft Tower Inflow
,”
Energy
,
42
(
1
), pp.
393
400
.
10.
Zhou
,
X. P.
,
Yuan
,
S.
, and
Bernardes
,
M. A. D. S.
,
2013
, “
Sloped-Collector Solar Updraft Tower Power Plant Performance
,”
Int. J. Heat Mass Transfer
,
66
, pp.
798
807
.
11.
Zhou
,
X. P.
,
Xu
,
Y. Y.
,
Yuan
,
S.
,
Chen
,
R. C.
, and
Song
,
B.
,
2014
, “
Pressure and Power Potential of Sloped-Collector Solar Updraft Tower Power Plant
,”
Int. J. Heat Mass Transfer
,
75
, pp.
450
461
.
12.
Xu
,
Y. Y.
,
Zhou
,
X. P.
, and
Cheng
,
Q.
,
2015
, “
Performance of a Large-Scale Solar Updraft Power Plant in a Moist Climate
,”
Int. J. Heat Mass Transfer
,
91
, pp.
619
629
.
13.
Ćoćić
,
A. S.
, and
Djordjević
,
V. D.
,
2016
, “
One-Dimensional Analysis of Compressible Flow in Solar Chimney Power Plants
,”
Sol. Energy
,
135
, pp.
810
820
.
14.
Zhou
,
X. P.
,
Xu
,
Y. Y.
, and
Huang
,
Y.
,
2016
, “
Novel Concept of Enhancing the Performance of Sloped Solar Collector by Using Natural Anabatic Winds
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1356
1361
.
15.
Koonsrisuk
,
A.
, and
Chitsomboon
,
T.
,
2013
, “
Mathematical Modeling of Solar Chimney Power Plants
,”
Energy
,
51
, pp.
314
322
.
16.
Fathi
,
N.
,
Aleyasin
,
S. S.
, and
Vorobieff
,
P.
,
2016
, “
Numerical–Analytical Assessment on Manzanares Prototype
,”
Appl. Therm. Eng.
,
102
, pp.
243
250
.
17.
Schlaich
,
J.
,
1995
,
The Solar Chimney: Electricity From the Sun
,
Axel Menges
,
Stuttgart, Germany
.
18.
Von Backström
,
T. W.
, and
Fluri
,
T. P.
,
2006
, “
Maximum Fluid Power Condition in Solar Chimney Power Plants—An Analytical Approach
,”
Sol. Energy
,
80
(
11
), pp.
1417
1423
.
19.
Nizetic
,
S.
, and
Klarin
,
B.
,
2010
, “
A Simplified Analytical Approach for Evaluation of the Optimal Ratio of Pressure Drop Across the Turbine in Solar Chimney Power Plants
,”
Appl. Energy
,
87
(
2
), pp.
587
591
.
20.
Guo
,
P. H.
,
Li
,
J. Y.
,
Wang
,
Y.
, and
Liu
,
Y. W.
,
2013
, “
Numerical Analysis of the Optimal Turbine Pressure Drop Ratio in a Solar Chimney Power Plant
,”
Sol. Energy
,
98
(Part A), pp.
42
48
.
21.
Guo
,
P. H.
,
Li
,
J. Y.
,
Wang
,
Y. F.
, and
Wang
,
Y.
,
2016
, “
Evaluation of the Optimal Turbine Pressure Drop Ratio for a Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
108
, pp.
14
22
.
22.
Schlaich
,
J.
,
Bergermann
,
R.
,
Schiel
,
W.
, and
Weinrebe
,
G.
,
2005
, “
Design of Commercial Solar Updraft Tower Systems—Utilization of Solar Induced Convective Flows for Power Generation
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
117
124
.
23.
Padki
,
M. M.
, and
Sherif
,
S. A.
,
1999
, “
On a Simple Analytical Model for Solar Chimneys
,”
Int. J. Energy Res.
,
23
(4), pp.
345
349
.
24.
Patel
,
S. K.
,
Prasad
,
D.
, and
Ahmed
,
M. R.
,
2014
, “
Computational Studies on the Effect of Geometric Parameters on the Performance of a Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
77
, pp.
424
431
.
25.
Li
,
W. B.
,
Wei
,
P.
, and
Zhou
,
X. P.
,
2014
, “
A Cost-Benefit Analysis of Power Generation From Commercial Reinforced Concrete Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
79
, pp.
104
113
.
You do not currently have access to this content.