Due to significant reduction in fossil fuel sources, several researches have been conducted recently to explore modern sources of renewable energy. One of the major fields in the category of renewable energy harnessing devices is parabolic trough solar collector (PTC). Several parameters have effect on the overall efficiency of the PTCs. As the effect of these parameters is coupled to each other, a comprehensive investigation is necessary. In the present study, a numerical analysis is performed to examine the efficiency of PTCs via variation of several governing parameters (e.g., wind velocity magnitude, nanoparticles volume fraction, inlet temperature, and reflector's orientation). A detailed set of absorber, reflector, and protection glass in addition to the surrounding environment is modeled to capture sufficiently accurate data. The working fluid is assumed to be nanofluid to inspect the advantage of metallic nanoparticle addition to the base fluid. The Monte Carlo radiation tracing method is utilized to calculate the solar gain on the absorber tube. According to the obtained results, the efficiencies are reduced by 1–3% by rotating the reflector by 30 deg relative to wind direction. Moreover, 14.3% and 12.4% efficiency enhancement is obtained by addition of 5% volume fraction of Al2O3 to the base synthetic oil for horizontal and rotated reflectors, respectively.

References

1.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
4
), pp.
109
125
.
2.
Al-Shamani
,
A. N.
,
Yazdi
,
M. H.
,
Alghoul
,
M.
,
Abed
,
A. M.
,
Ruslan
,
M.
,
Mat
,
S.
, and
Sopian
,
K.
,
2014
, “
Nanofluids for Improved Efficiency in Cooling Solar Collectors a Review
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
348
367
.
3.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
,
1997
, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
MRS Online Proc. Libr.
,
457
, pp.
3
11
.
4.
Lee
,
S.
,
Choi
,
U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
5.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultrafine Particles (Dispersion of γ-Al2O3, SiO2 and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.
6.
Zhu
,
H.
,
Zhang
,
C.
,
Tang
,
Y.
,
Wang
,
J.
,
Ren
,
B.
, and
Yin
,
Y.
,
2007
, “
Preparation and Thermal Conductivity of Suspensions of Graphite Nanoparticles
,”
Carbon
,
45
(
1
), pp.
226
228
.
7.
Akbarimoosavi
,
S. M.
, and
Yaghoubi
,
M.
,
2014
, “
3D Thermal-Structural Analysis of an Absorber Tube of a Parabolic Trough Collector and the Effect of Tube Deflection on Optical Efficiency
,”
Energy Procedia
,
49
, pp.
2433
2443
.
8.
Ghadirijafarbeigloo
,
Sh.
,
Zamzamian
,
A. H.
, and
Yaghoubi
,
M.
,
2014
, “
3-D Numerical Simulation of Heat Transfer and Turbulent Flow in a, Receiver Tube of Solar Parabolic Trough Concentrator With Louvered Twisted-Tape Inserts
,”
Energy Procedia
,
49
, pp.
373
380
.
9.
Hachicha
,
A. A.
,
Rodríguez
,
I.
,
Capdevila
,
R.
, and
Oliva
,
A.
,
2013
, “
Heat Transfer Analysis and Numerical Simulation of a Parabolic Trough Solar Collector
,”
Appl. Energy
,
111
, pp.
581
592
.
10.
Naeeni
,
N.
, and
Yaghoubi
,
M.
,
2007
, “
Analysis of Wind Flow Around a Parabolic Collector (2) Heat Transfer From Receiver Tube
,”
Renewable Energy
,
32
(
8
), pp.
1259
1272
.
11.
Kaloudis
,
E.
,
Papanicolaou
,
E.
, and
Belessiotis
,
V.
,
2016
, “
Numerical Simulations of a Parabolic Trough Solar Collector With Nanofluid Using a Two-Phase Model
,”
Renewable Energy
,
97
, pp.
218
229
.
12.
He
,
Y.-L.
,
Xiao
,
J.
,
Cheng
,
Z.-D.
, and
Tao
,
Y.-B.
,
2011
, “
A MCRT, FVM Coupled Simulation Method for Energy Conversion Process in Parabolic Trough Solar Collector
,”
Renewable Energy
,
36
(
3
), pp.
976
985
.
13.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
, and
Townsend
,
J.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
14.
Zeinali Heris
,
S.
,
Etemad
,
S. Gh.
, and
Nasr Esfahany
,
M.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
529
535
.
15.
Hong
,
K. S.
,
Hong
,
T. K.
, and
Yang
,
H. S.
,
2006
, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
,”
Appl. Phys. Lett.
,
88
(
3
), p.
031901
.
16.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.
17.
Khullar
,
V.
,
Tyagi
,
H.
,
Patrick
,
E.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2012
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.
18.
Sokhansefat
,
T.
,
Kasaeian
,
A. B.
, and
Kowsary
,
F.
,
2014
, “
Heat Transfer Enhancement in Parabolic Trough Collector Tube Using Al2O3/Synthetic Oil Nanofluid
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
636
644
.
19.
Kasaeian
,
A.
,
Daviran
,
S.
,
Azarian
,
R. D.
, and
Rashidi
,
A.
,
2015
, “
Performance Evaluation and Nanofluid Using Capability Study of a Solar Parabolic Trough Collector
,”
Energy Convers. Manage.
,
89
, pp.
368
375
.
20.
Esmaeilzadeh
,
E.
,
Almohammadi
,
H.
,
NasiriVatan
,
Sh.
, and
Omrani
,
A. N.
,
2013
, “
Experimental Investigation of Hydrodynamics and Heat Transfer Characteristics of γ-Al2O3/Water Under Laminar Flow Inside a Horizontal Tube
,”
Int. J. Therm. Sci.
,
63
, pp.
31
37
.
21.
Kawamura
,
T.
, and
Takami
,
H.
,
1986
, “
Computation of High Reynolds Number Flow Around a Circular Cylinder With Surface Roughness
,”
Fluid Dyn. Res.
,
1
(
2
), pp.
145
162
.
You do not currently have access to this content.