A hybrid algorithm that combines genetic programming (GP) and genetic algorithms (GAs) that deduce a closed-form correlation of building energy use is presented. Throughout the evolution, the terms, functions, and form of the correlation are evolved via the genetic program. Whenever the fitness of the best correlation stagnates for a specific number of GP generations, the GA optimizes the real-valued coefficients of each correlation in the population. When the GA, in turn, stagnates, correlations with optimized coefficients and powers are passed back to the GP for further search. The hybrid algorithm is applied to the problem of predicting energy use of a U-shape building. More than 800 buildings with various foot-print areas, relative compactness (RC), window-to-wall ratio (WWR), and projection factor (PF) values were simulated using the VisualDOETM energy simulation engine. The algorithm tries to minimize the difference between simulated and predicted values by maximizing the R2 value. The algorithm was able to arrive at a closed-form correlation that combines the four building parameters, accurate to within 4%. The methodology can be easily used to model any type of data behavior in any engineering or nonengineering application.

References

1.
Bribián
,
I. Z.
,
Capilla
,
A. V.
, and
Usón
,
A. A.
,
2011
, “
Life Cycle Assessment of Building Materials: Comparative Analysis of Energy and Environmental Impacts and Evaluation of the Eco-Efficiency Improvement Potential
,”
Build. Environ.
,
46
(
5
), pp.
1133
1140
.
2.
Jylhä
,
K.
,
Jokisalo
,
J.
,
Ruosteenoja
,
K.
,
Pilli-Sihvola
,
K.
,
Kalamees
,
T.
,
Seitola
,
T.
,
Mäkelä
,
H. M.
,
Hyvönen
,
R.
, and
Laapas
,
M.
,
2015
, “
Energy Demand for the Heating and Cooling of Residential Houses in Finland in a Changing Climate
,”
Energy Build.
,
99
, pp.
104
116
.
3.
Beghi
,
A.
,
Cecchinato
,
L.
,
Rampazzo
,
M.
, and
Simmin
,
F.
,
2014
, “
Energy Efficient Control of HVAC Systems With Ice Cold Thermal Energy Storage
,”
J. Process Control
,
24
(
6
), pp.
773
781
.
4.
Treado
,
S.
, and
Chen
,
Y.
,
2013
, “
Saving Building Energy Through Advanced Control Strategies
,”
Energies
,
6
(
12
), pp.
4769
4785
.
5.
Fabrizio
,
E.
,
Corrado
,
V.
, and
Filippi
,
M.
,
2010
, “
A Model to Design and Optimize Multi-Energy Systems in Buildings at the Design Concept Stage
,”
Renewable Energy
,
35
(
3
), pp.
644
655
.
6.
Caldas
,
L. G.
, and
Norford
,
L. K.
,
2003
, “
Genetic Algorithms for Optimization of Building Envelopes and the Design and Control of HVAC Systems
,”
ASME J. Sol. Energy Eng.
,
125
(
3
), pp.
343
351
.
7.
Ourghi
,
R.
,
AlAnzi
,
A.
, and
Krarti
,
M.
,
2007
, “
A Simplified Analysis Method to Predict the Impact of Shape on Annual Energy Use for Office Buildings
,”
Energy Convers. Manage.
,
48
(
1
), pp.
300
305
.
8.
AlAnzi
,
A.
,
Seo
,
D.
, and
Krarti
,
M.
,
2009
, “
Impact of Building Shape on Thermal Performance of Office Buildings in Kuwait
,”
Energy Convers. Manage.
,
50
(
3
), pp.
822
828
.
9.
Sofuoglu
,
S.
,
2008
, “
Application of Artificial Neural Network to Predict Prevalence of Building-Related Symptoms in Office Building
,”
Building Environ.
,
43
(
6
), pp.
1121
1126
.
10.
Magnier
,
L.
, and
Haghighat
,
F.
,
2010
, “
Multiobjective Optimization of Building Design Using TRNSYS Simulations, Genetic Algorithm, and Artificial Neural Network
,”
Build. Environ.
,
45
(
3
), pp.
739
742
.
11.
Moon
,
J. W.
,
Jung
,
S. K.
,
Kim
,
Y.
, and
Han
,
S.-H.
,
2011
, “
Comparative Study of Artificial Intelligence-Based Building Thermal Control Methods–Application of Fuzzy, Adaptive, Neuro-Fuzzy Inference System, and Artificial Neural Network
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2422
2429
.
12.
Bichiou
,
Y.
, and
Krarti
,
M.
,
2011
, “
Optimization of Envelope and HVAC Systems Selection for Residential Buildings
,”
Energy Build.
,
43
(
12
), pp.
3373
3382
.
13.
Katipamula
,
S.
,
Reddy
,
T. A.
, and
Claridge
,
D. E.
,
1998
, “
Multivariate Regression Modeling
,”
ASME J. Sol. Energy Eng.
,
120
(
3
), pp.
177
184
.
14.
Krarti
,
M.
,
2003
, “
An Overview of Artificial Intelligence-Based Methods for Building Energy Systems
,”
ASME J. Sol. Energy Eng.
,
125
(
3
), pp.
331
342
.
15.
Lee
,
Y.-S.
, and
Tong
,
L.-I.
,
2011
, “
Forecasting Energy Consumption Using a Grey Model Improved by Incorporating Genetic Programming
,”
Energy Convers. Manage.
,
52
(
1
), pp.
147
152
.
16.
Pérez
,
J. L.
, Miguélez, M.,
Rabuñal
,
J. R.
, and
Abella
,
F. M.
,
2008
, “
Applying Genetic Programming to Civil Engineering in the Improvement of Models, Codes and Norms
,”
11th Ibero-American Conference on AI, Advances in Artificial Intelligence
(
IBERAMIA
), Lisbon, Portugal, Oct. 14–17, pp.
452
460
.
17.
Raymer
,
M. L.
,
Punch
,
W. F.
,
Goodman
,
E. D.
, and
Kuhn
,
L. A.
,
1996
, “
Genetic Programming for Improved Data Mining: Application to the Biochemistry of Protein Interactions
,”
First Annual Conference on Genetic Programming
, Stanford, CA, July 28–31, pp.
375
380
.https://dl.acm.org/citation.cfm?id=1595589
18.
Castelli
,
M.
,
Trujillo
,
L.
,
Vanneschi
,
L.
, and
Popovič
,
A.
,
2015
, “
Prediction of Energy Performance of Residential Buildings: A Genetic Programming Approach
,”
Energy Build.
,
102
, pp.
67
74
.
19.
Bourisli
,
R. I.
, and
Kaminski
,
D. A.
,
2006
, “
Evolutionary Optimization Techniques as Versatile Solvers for Hard-to-Converge Problems in Computational Fluid Dynamics
,”
Int. J. Numer. Methods Fluids
,
52
(
3
), pp.
321
354
.
20.
Liu
,
F.-B.
,
2008
, “
A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3745
3752
.
21.
Dodier
,
R. H.
, and
Henze
,
G. P.
,
2004
, “
Statistical Analysis of Neural Networks as Applied to Building Energy Prediction
,”
ASME J. Sol. Energy Eng.
,
126
(
1
), pp.
592
600
.
22.
Bourisli
,
R. I.
, and
AlAnzi
,
A. A.
,
2011
, “
Closed-Form Correlation of Buildings Energy Use With Key Design Parameters Calibrated Using a Genetic Algorithm
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041005
.
23.
Deb
,
K.
,
Anand
,
A.
, and
Joshi
,
D.
,
2002
, “
A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization
,”
MIT Press Evol. Comput.
,
10
(
4
), pp.
371
395
.
24.
Hildebrandt
,
T.
, and
Branke
,
J.
,
2015
, “
On Using Surrogates With Genetic Programming
,”
MIT Press Evol. Comput.
,
23
(
3
), pp.
343
367
.
25.
Renders
,
J. M.
, and
Bersini
,
H.
,
1994
, “
Hybridizing Genetic Algorithm With Hill-Climbing Methods for Global Optimization: Two Possible Ways
,” First
IEEE
Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence
, Orlando, FL, June 27–29, pp.
312
317
.
26.
Zemella
,
G.
,
De March
,
D.
,
Borrotti
,
M.
, and
Poli
,
I.
,
2011
, “
Optimised Design of Energy Efficient Building Façades Via Evolutionary Neural Networks
,”
Energy Build.
,
43
(
12
), pp.
3297
3302
.
27.
Neto
,
A. H.
, and
Fiorelli
,
F. A. S.
,
2008
, “
Comparison Between Detailed Model Simulation and Artificial Neural Network for Forecasting Building Energy Consumption
,”
Energy Build.
,
40
(
12
), pp.
2169
2176
.
28.
Yu
,
W.
,
Li
,
B.
,
Jia
,
H.
,
Zhang
,
M.
, and
Wang
,
D.
,
2015
, “
Application of Multi-Objective Genetic Algorithm to Optimize Energy Efficiency and Thermal Comfort in Building Design
,”
Energy Build.
,
88
, pp.
135
143
.
29.
Al-Anzi
,
A.
,
2007
, “
Architectural and Energy Related Parameters of Office Buildings in the State of Kuwait
,”
Eighth International Conference on Multi-Purpose High-Rise Towers and Tall Buildings
, IFHS, Abu Dhabi, United Arab Emirates, Dec. 10–12, pp. 23–28.
30.
Deb
,
K.
, and
Agrawal
,
R. B.
,
1995
, “
Simulated Binary Crossover for Continuous Search Space
,”
Complex Syst.
,
9
(
2
), pp.
115
148
.http://www.complex-systems.com/abstracts/v09_i02_a02.html
31.
Messa
,
K.
, and
Lybanon
,
M.
,
1991
, “
Curve Fitting Using Genetic Algorithms
,” Naval Oceanographic and Atmospheric Research Laboratory, Stennis Space Center, MS, Technical Report No.
AD-A247 206
.http://www.dtic.mil/dtic/tr/fulltext/u2/a247206.pdf
You do not currently have access to this content.