To improve the solar energy utilization in the photovoltaic power, the sun ray double axis tracking device is designed and its tracking method is introduced. Using the finite element method, the parameterized analysis model is built and the static calculation is performed in different conditions for the device. The design feasibility of the device is verified by evaluating the stress. The lightweight of the device is made on the premise that the design satisfies the intensity and this provides the basis for manufacturing the prototype. The sun's rays tracing experiment is carried out by the prototype. Results show that the device design is reasonable and meets the design requirements; the key working conditions for the solar tracking design are found; the lightweight is obvious and the weight is reduced by 14%; the average errors of azimuth angle and height angle are within 5 deg; compared with the fixed device, the increasing proportion of solar energy one day is up to 52.6%; and the device works steadily and has good mechanical properties.

References

1.
Gao
,
F.
,
Sun
,
C. Q.
, and
Liu
,
Q. G.
,
2001
, “
The Status and Trends of Solar Energy Utilization
,”
World Sci. Technol. Res. Dev.
,
23
(
4
), pp.
35
39
.
2.
Adrian
,
W. Y. W.
,
Durairajah
,
V.
, and
Gobee
,
S.
,
2014
, “
Autonomous Dual Axis Solar Tracking System Using Optical Sensor and Sun Trajectory
,”
Lecture Notes Electr. Eng.
,
291
, pp.
507
520
.
3.
Okoye
,
C. O.
,
Taylan
,
O.
, and
Baker
,
D. K.
,
2016
, “
Solar Energy Potentials in Strategically Located Cities in Nigeria: Review, Resource Assessment and PV System Design
,”
Renewable Sustainable Energy Rev.
,
55
(
3
), pp.
550
566
.
4.
Yao
,
Y.
,
Hu
,
Y.
,
Gao
,
S. D.
,
Yang
,
G.
, and
Du
,
J. G.
,
2014
, “
A Multipurpose Dual-Axis Solar Tracker With Two Tracking Strategies
,”
Renewable Energy
,
72
(
4
), pp.
88
98
.
5.
Rambhowan
,
Y.
, and
Oree
,
V.
,
2014
, “
Improving the Dual-Axis Solar Tracking System Efficiency Via Drive Power Consumption Optimization
,”
Appl. Sol. Energy
,
50
(
2
), pp.
74
80
.
6.
Oh
,
S. J.
,
Burhan
,
M.
,
Ng
,
K. C.
,
Kim
,
Y.
, and
Chun
,
W.
,
2015
, “
Development and Performance Analysis of a Double Axis Solar Tracker for Concentrated Photovoltaics
,”
Int. J. Energy Res.
,
39
(
7
), pp.
965
976
.
7.
Aiuchi
,
K.
,
Yoshida
,
K.
,
Onozaki
,
M.
,
Katayama
,
Y.
,
Nakamura
,
M.
, and
Nakamura
,
K.
,
2006
, “
Sensor-Controlled Heliostat With an Equatorial Mount
,”
Sol. Energy
,
80
(
9
), pp.
1089
1097
.
8.
Arul Kumar
,
M.
, and
Arjun
,
T. S.
,
2016
, “
Design of Single Axis Solar Tracking System Using PLC
,”
Middle-East J. Sci. Res.
,
24
(
S2
), pp.
1
5
.https://www.idosi.org/mejsr/mejsr24(S2)16/1.pdf
9.
Kadmiri
,
Z. E.
,
Kadmiri
,
O. E.
,
Masmoudi
,
L.
, and
Bargach
,
M. N.
,
2015
, “
A Novel Solar Tracker Based on Omnidirectional Computer Vision
,”
J. Sol. Energy
,
2015
, p.
149852
.
10.
Gai
,
Z. W.
,
Gao
,
S. Q.
, and
Long
,
J.
,
2014
, “
Design of Automatic Sunlight Tracking Solar Panel System Based on Single Chip Microcomputer
,”
Adv. Mater. Res.
,
834–836
, pp.
1128
1131
.
11.
Engin
,
M.
, and
Engin
,
D.
,
2013
, “
Optimization Mechatronic Sun Tracking System Controller's for Improving Performance
,” IEEE International Conference on Mechatronics and Automation (
ICMA
), Takamatsu, Japan, Aug. 4–7, pp. 873–1776.
12.
Clifford
,
M. J.
, and
Eastwood
,
D.
,
2004
, “
Design of a Novel Passive Solar Tracker
,”
Sol. Energy
,
77
(
3
), pp.
269
280
.
13.
Ferroudji
,
F.
,
Ouattas
,
T.
, and
Khélifi
,
C.
,
2013
, “
Design, Modeling and Finite Element Static Analysis of a New Two Axis Solar Tracker Using SolidWorks/CosmosWorks
,”
Appl. Mech. Mater.
,
446–447
, pp.
738
743
.
14.
Zhang
,
S. W.
,
Zhang
,
J. F.
,
Song
,
Y. T.
,
Wang
,
Z. W.
,
Liu
,
S. M.
,
Lu
,
K.
,
Chen
,
Z. J.
, and
Jiang
,
X. P.
,
2011
, “
Heat Transfer and Thermal Stress Analysis for Vacuum Barrier of ITER CC Cryostat Feed-Though
,”
Mech. Des. Manuf.
,
12
(12), pp.
194
196
.
15.
Zhang
,
S. W.
,
Song
,
Y. T.
,
Wang
,
Z. W.
,
Du
,
S. S.
,
Ji
,
X.
,
Liu
,
X. F.
,
Feng
,
C. L.
,
Yang
,
H.
,
Wang
,
S. K.
, and
Daly
,
E.
,
2014
, “
Structural Analysis and Optimization for ITER Upper ELM Coil
,”
Fusion Eng. Des.
,
89
(
1
), pp.
1
5
.
16.
Zhang
,
S. W.
,
Song
,
Y. T.
,
Wang
,
Z. W.
,
Lu
,
K.
,
Cheng
,
Y.
,
Du
,
S. S.
,
Ji
,
X.
, and
Luo
,
Z. R.
,
2014
, “
Mechanical Analysis for ITER Lower CC Feeder
,”
J. Fusion Energy
,
33
(
4
), pp.
1
7
.
17.
Liu
,
H. W.
,
2004
,
Mechanics of Materials
, 4th ed.,
Higher Education Press
,
Beijing, China
.
18.
Gong
,
S. G.
,
Xie
,
G. L.
, and
Huang
,
Y. Q.
,
2004
,
ANSYS Operation Command and Parametric Programming
,
Mechanical Industry Press
,
Beijing, China
.
19.
Abdollahpour
,
M.
,
Golzarian
,
M. R.
,
Rohani
,
A.
, and
Zarchi
,
H. A.
,
2018
, “
Development of a Machine Vision Dual-Axis Solar Tracking System
,”
Sol. Energy
,
169
, pp.
136
143
.
You do not currently have access to this content.