Abstract

Solar energy is one of the main renewable energy sources capable of contributing to global energy demand. However, the solar resource is intermittent, making its integration into the electrical system a difficult task. Here, we present and compare two machine learning techniques, deep learning (DL) and support vector regression (SVR), to verify their behavior for solar forecasting. Our testing from Spain showed that the mean absolute percentage error for predictions using DL and SVR is 7.9% and 8.52%, respectively. The DL achieved the best results for solar energy forecast, but it is worth mentioning that the SVR also obtained satisfactory results.

References

1.
Krishna
,
G. S.
, and
Tukaram
,
M.
,
2019
, “
Improved SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Enhance Maximum Power Under Partial Shading Conditions
,”
Renew. Sustain. Energy Rev.
,
109
(
1
), pp.
333
348
.
2.
Jordehi
,
A. R.
,
2018
, “
Enhanced Leader Particle Swarm Optimisation (ELPSO): An Efficient Algorithm for Parameter Estimation of Photovoltaic (PV) Cells and Modules
,”
Sol. Energy
,
159
, pp.
78
87
.
3.
Yousri
,
D.
,
Thanikanti
,
S. B.
,
Allam
,
D.
,
Ramachandaramurthy
,
V. K.
, and
Eteiba
,
M. B.
,
2020
, “
Fractional Chaotic Ensemble Particle Swarm Optimizer for Identifying the Single, Double, and Three Diode Photovoltaic Models’ Parameters
,”
Energy
,
195
, pp.
1
15
.
4.
Lima
,
M. A. F. B.
,
Carvalho
,
P. C.
,
Carneiro
,
T. C.
,
Leite
,
J. R.
,
de Bessa Neto
,
L. J.
,
Rodrigues
,
G. K.
, and
de Melo
,
F. E.
,
2017
, “
Portfolio Theory Applied to Solar and Wind Resources Forecast
,”
IET Renew. Power Gener.
,
11
(
7
), pp.
973
978
.
5.
Pazikadin
,
A. R.
,
Rifai
,
D.
,
Ali
,
K.
,
Malik
,
M. Z.
,
Abdalla
,
A. N.
, and
Faraj
,
M. A.
,
2020
, “
Solar Irradiance Measurement Instrumentation and Power Solar Generation Forecasting Based on Artificial Neural Networks (ANN): A Review of Five Years Research Trend
,”
Sci. Total Environ.
,
715
, pp.
1
13
.
6.
Wilberforce
,
T.
,
Baroutaji
,
A.
,
El Hassan
,
Z.
,
Thompson
,
J.
,
Soudan
,
B.
, and
Olabi
,
A. G.
,
2019
, “
Prospects and Challenges of Concentrated Solar Photovoltaics and Enhanced Geothermal Energy Technologies
,”
Sci. Total Environ.
,
659
(
Part A
), pp.
851
861
.
7.
Lima
,
M. A. F. B.
,
Carvalho
,
P. C.
,
Fernández-Ramírez
,
L. M.
, and
Braga
,
A. P.
,
2020
, “
Improving Solar Forecasting Using Deep Learning and Portfolio Theory Integration
,”
Energy
,
195
, pp.
1
14
.
8.
Yang
,
D.
,
2019
, “
A Universal Benchmarking Method for Probabilistic Solar Irradiance Forecasting
,”
Sol. Energy
,
184
, pp.
410
416
.
9.
Trapero
,
J. R.
,
Nikolaos
,
K.
, and
Martin
,
A.
,
2015
, “
Short-Term Solar Irradiation Forecasting Based on Dynamic Harmonic Regression
,”
Energy
,
84
, pp.
289
295
.
10.
Carsten
,
C.
, and
Stadtmann
,
G.
,
2019
, “
Renewable Generation Forecast Studies—Review and Good Practice Guidance
,”
Renew. Sustain. Energy Rev.
,
108
(
4
), pp.
312
322
.
11.
Shi
,
J.
,
Lee
,
W. J.
,
Liu
,
Y.
,
Yang
,
Y.
, and
Wang
,
P.
,
2012
, “
Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines
,”
IEEE Trans. Ind. Appl.
,
48
(
3
), pp.
1064
1069
.
12.
Haykin
,
S.
,
2007
,
Redes neurais: princípios e prática
, 2,
Bookman Editora
,
São Paulo
.
13.
Belaid
,
S.
, and
Mellit
,
A.
,
2016
, “
Prediction of Daily and Mean Monthly Global Solar Radiation Using Support Vector Machine in an Arid Climate
,”
Energy Convers. Manage.
,
118
, pp.
105
118
.
14.
Zeng
,
J.
, and
Qiao
,
W.
,
2013
, “
Short-Term Solar Power Prediction Using a Support Vector Machine
,”
Renew. Energy
,
52
(
3
), pp.
118
127
.
15.
Meenal
,
R.
, and
Selvakumar
,
A. I.
,
2018
, “
Assessment of SVM, Empirical and ANN Based Solar Radiation Prediction Models With Most Influencing Input Parameters
,”
Renew. Energy
,
121
(
4
), pp.
324
343
.
16.
Ravinesh
,
D. C.
,
Xiaohu
,
W.
, and
Qi
,
F.
,
2016
, “
A Wavelet-Coupled Support Vector Machine Model for Forecasting Global Incident Solar Radiation Using Limited Meteorological Dataset
,”
Appl. Energy
,
168
, pp.
568
593
.
17.
Yen
,
C. F.
,
Hsieh
,
H. Y.
,
Su
,
K. W.
,
Yu
,
M. C.
, and
Leu
,
J. S.
,
2018
, “
Solar Power Prediction via Support Vector Machine and Random Forest
,”
E3S Web of Conferences, July 27-Aug. 2 (Vol. 69, p. 01004), EDP Sciences
,
Irkutsk, Cape Hadartha, Russia
.
18.
Jiang
,
H.
, and
Yao
,
D.
,
2017
, “
Global Horizontal Radiation Forecast Using Forward Regression on a Quadratic Kernel Support Vector Machine: Case Study of the Tibet Autonomous Region in China
,”
Energy
,
133
(
9
), pp.
270
283
.
19.
Srivastava
,
R.
,
Tiwari
,
A. N.
, and
Giri
,
V. K.
,
2018
, “
Forecasting of Solar Radiation in India Using Various ANN models
,”
5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and ComputerEngineering (UPCON)
,
Gorakhpur, India
,
Nov. 2–4
,
IEEE
, pp.
1
6
.
20.
Çevik
,
S.
,
Çakmak
,
R.
, and
Altaş
,
Ȧ. H.
,
2017
, “
A Day Ahead Hourly Solar Radiation Forecasting by Artificial Neural Networks: A Case Study for Trabzon Province
,”
International Artificial Intelligence and Data Processing Symposium (IDAP)
,
Malatya, Turkey
,
Sept. 16–17
,
IEEE
, pp.
1
16
.
21.
Munir
,
M. A.
,
Khattak
,
A.
,
Imran
,
K.
,
Ulasyar
,
A.
, and
Khan
,
A.
,
2019
, “
Solar PV Generation Forecast Model Based on the Most Effective Weather Parameters
,”
International Conference on Electrical, Communication, and Computer Engineering (ICECCE)
,
Kuala Lumpur, Malaysia
,
June 12–13
,
IEEE
, pp.
1
5
.
22.
Nitisanon
,
S.
, and
Hoonchareon
,
N.
,
2017
, “
Solar Power Forecast with Weather Classification Using Self-Organized Map
,”
IEEE Power and Energy Society General Meeting
,
Pakhtunkhwa, Paquistão
,
July 24–25
, IEEE, pp.
1
5
.
23.
Jallal
,
M. A.
,
Chabaa
,
S.
,
El Yassini
,
A.
,
Zeroual
,
A.
,
Ibnyaich
,
S.
, and
Raoufi
,
M.
,
2019
, “
Elman Neural Network for Solar Radiation Components Forecasting Based on the Desired Tilt Angle
,”
7th International Renewable and Sustainable Energy Conference (IRSEC)
,
Agadir, Morocco
,
Nov. 27–30
, IEEE, pp.
1
5
.
IEEE
24.
Wang
,
F.
,
Zhang
,
Z.
,
Chai
,
H.
,
Yu
,
Y.
,
Lu
,
X.
,
Wang
,
T.
, and
Lin
,
Y.
,
2019
, “
Deep Learning Based Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image
,”
IEEE Industry Applications Society Annual Meeting
,
Baltimore, MD
,
Sept. 29–Oct. 3
,
IEEE
, pp.
1
9
.
25.
Leva
,
S.
,
Mussetta
,
M.
,
Nespoli
,
A.
, and
Ogliari
,
E.
,
2017
, “
PV Power Forecasting Improvement by Means of a Selective Ensemble Approach
,”
IEEE Milan PowerTech
,
Milan, Italy
,
June 23–27
,
IEEE
, pp.
1
5
.
26.
Yu
,
Y.
,
Cao
,
J.
, and
Zhu
,
J.
,
2019
, “
An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions
,”
IEEE Access
,
7
, p.
145651
.
27.
Gensler
,
A.
,
Henze
,
J.
,
Sick
,
B.
, and
Raabe
,
N.
,
2017
, “
Deep Learning for Solar Power Forecasting—An Approach Using AutoEncoder and LSTM Neural Networks
,”
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Milan, Italy
,
June 23–27
,
IEEE
, p.
002858
.
28.
Li
,
P.
,
Bessafi
,
M.
,
Morel
,
B.
,
Chabriat
,
J. P.
,
Delsaut
,
M.
, and
Li
,
Q.
,
2020
, “
Daily Surface Solar Radiation Prediction Mapping Using Artificial Neural Network: The Case Study of Reunion Island
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
010801
.
29.
Sridharan
,
M.
,
2020
, “
Application of Generalized Regression Neural Network in Predicting the Performance of Natural Convection Solar Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
013460
.
30.
Kamadinata
,
J. O.
,
Ken
,
T. L.
, and
Suwa
,
T.
,
2020
, “
Solar Irradiance Fluctuation Prediction Methodology Using Artificial Neural Networks
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031003
.
31.
Hussain
,
S.
, and
AlAlili
,
A.
,
2016
, “
Online Sequential Learning of Neural Networks in Solar Radiation Modeling Using Hybrid Bayesian Hierarchical Approach
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061012
.
32.
Mohandes
,
M.
,
Rehman
,
S.
, and
Halawani
,
T. O.
,
1998
, “
Estimation of Global Solar Radiation Using Artificial Neural Networks
,”
Renew. Energy
,
14
(
1–4
), pp.
179
184
.
33.
Pierro
,
M.
,
Bucci
,
F.
,
De Felice
,
M.
,
Maggioni
,
E.
,
Perotto
,
A.
,
Spada
,
F.
, and
Cornaro
,
C.
,
2017
, “
Deterministic and Stochastic Approaches for Day-Ahead Solar Power Forecasting
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021010
.
34.
Guermoui
,
M.
,
Gairaa
,
K.
,
Boland
,
J.
, and
Arrif
,
T.
,
2021
, “
A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
020801
.
35.
Khatib
,
T.
,
Mohamed
,
A.
,
Mahmoud
,
M.
, and
Sopian
,
K.
,
2012
, “
A New Approach for Meteorological Variables Prediction at Kuala Lumpur, Malaysia, Using Artificial Neural Networks: Application for Sizing and Maintaining Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021005
.
36.
Ameen
,
A. M.
,
Pasupuleti
,
J.
,
Khatib
,
T.
,
Elmenreich
,
W.
, and
Kazem
,
H. A.
,
2015
, “
Modeling and Characterization of a Photovoltaic Array Based on Actual Performance Using Cascade-forward Back Propagation Artificial Neural Network
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041010
.
37.
Nirudh
,
J.
, and
Somchat
,
J.
,
2019
, “
Estimation of Solar Potential for Thailand Using Adaptive Neurofuzzy Inference System Models
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061009
.
38.
Lauret
,
P.
,
Voyant
,
C.
,
Soubdhan
,
T.
,
David
,
M.
, and
Poggi
,
P.
,
2015
, “
A Benchmarking of Machine Learning Techniques for Solar Radiation Forecasting in an Insular Context
,”
Sol. Energy
,
112
, pp.
446
457
.
39.
Zaouali
,
K.
,
Rekik
,
R.
, and
Bouallegue
,
R.
,
2018
, “
Deep Learning Forecasting Based on Auto-lstm Model for Home Solar Power Systems
,”
IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (hpcc/smartcity/dss)
,
IEEE
, pp.
235
242
.
40.
Kasburg
,
C.
, and
Stefenon
,
S. F.
,
2019
, “
Deep Learning for Photovoltaic Generation Forecast in Active Solar Trackers
,”
IEEE Latin Am. Trans.
,
17
(
12
), pp.
2013
2019
.
41.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Fouad
,
M.
,
2021
, “
Short-Term Prediction of Global Solar Radiation Energy Using Weather Data and Machine Learning Ensembles: A Comparative Study
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051003
.
42.
Khatib
,
T.
,
Abunajeeb
,
I.
, and
Heneni
,
Z.
,
2020
, “
Determination of Mars Solar-Belt by Modeling of Solar Radiation Using Artificial Neural Networks
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011007
.
43.
Yagli
,
G. M.
,
Yang
,
D.
, and
Srinivasan
,
D.
,
2019
, “
Reconciling Solar Forecasts: Sequential Reconciliation
,”
Sol. Energy
,
179
, pp.
391
397
.
44.
Fahimi
,
F.
,
Yaseen
,
Z. M.
, and
El-shafie
,
A.
,
2017
, “
Application of Soft Computing Based Hybrid Models in Hydrological Variables Modeling: A Comprehensive Review
,”
Theor. Appl. Climatol.
,
128
(
3–4
), pp.
875
903
.
45.
Bishop
,
C. M.
,
2006
,
Pattern Recognition. Machine Learning
, 9th ed.,
Springer
,
Berlin
.
46.
Calsing
,
L. C.
,
2015
,
Previsão de demanda combinada a partir de métodos quantitativos e opinião de especialistas
,
UFRGS
,
Belo Horizonte
.
47.
Shang
,
C.
, and
Wei
,
P.
,
2018
, “
Enhanced Support Vector Regression Based Forecast Engine to Predict Solar Power Output
,”
Renew. Energy
,
127
(
12
), pp.
269
283
.
48.
Wang
,
F. K.
, and
Mamo
,
T.
,
2018
, “
A Hybrid Model Based on Support Vector Regression and Differential Evolution for Remaining Useful Lifetime Prediction of Lithium-Ion Batteries
,”
J. Power Sources
,
401
, pp.
49
54
.
49.
Wu
,
S.
, and
Akbarov
,
A.
,
2011
, “
Support Vector Regression for Warranty Claim Forecasting
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
196
204
.
50.
Panahi
,
M.
,
Sadhasivam
,
N.
,
Pourghasemi
,
H. R.
,
Rezaie
,
F.
, and
Lee
,
S.
,
2020
, “
Spatial Prediction of Groundwater Potential Mapping Based on Convolutional Neural Network (CNN) and Support Vector Regression (SVR)
,”
J. Hydrol.
,
588
(
6
), pp.
1
12
.
51.
Yu
,
X.
,
Wang
,
Y.
,
Wu
,
L.
,
Chen
,
G.
,
Wang
,
L.
, and
Qin
,
H.
,
2020
, “
Comparison of Support Vector Regression and Extreme Gradient Boosting for Decomposition-Based Data-Driven 10-Day Streamflow Forecasting
,”
J. Hydrol.
,
582
, pp.
1
12
.
52.
Li
,
L.
,
Zheng
,
W.
, and
Wang
,
Y.
,
2019
, “
Prediction of Moment Redistribution in Statically Indeterminate Reinforced Concrete Structures Using Artificial Neural Network and Support Vector Regression
,”
Appl. Sci.
,
9
(
1
), pp.
1
24
.
53.
Zarei
,
T.
,
Behyad
,
R.
, and
Abedini
,
E.
,
2018
, “
Study on Parameters Effective on the Performance of a Humidification-Dehumidification Seawater Greenhouse Using Support Vector Regression
,”
Desalination
,
435
, pp.
235
245
.
54.
Sun
,
Y.
,
Venugopal
,
V.
, and
Brandt
,
A. R.
,
2019
, “
Short-Term Solar Power Forecast With Deep Learning: Exploring Optimal Input and Output Configuration
,”
Sol. Energy
,
188
, pp.
730
741
.
55.
Benamrou
,
B.
,
Ouardouz
,
M.
,
Allaouzi
,
I.
, and
Ben Ahmed
,
M.
,
2020
, “
A Proposed Model to Forecast Hourly Global Solar Irradiation Based on Satellite Derived Data, Deep Learning and Machine Learning Approaches
,”
J. Ecol. Eng.
,
21
(
4
), pp.
26
38
.
56.
Huang
,
X.
,
Wang
,
H.
,
Xu
,
L.
,
Liu
,
J.
,
Li
,
R.
, and
Dai
,
X.
,
2018
, “
Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-Sight Magnetograms
,”
Astrophys. J.
,
856
(
1
), pp.
1
11
. 7
57.
Moncada
,
A.
,
Richardson
,
W.
, and
Vega-Avila
,
R.
,
2018
, “
Deep Learning to Forecast Solar Irradiance Using a Six-Month UTSA Skyimager Dataset
,”
Energies
,
11
(
8
), pp.
1
16
.
58.
Zhen
,
Z.
,
Liu
,
J.
,
Zhang
,
Z.
,
Wang
,
F.
,
Chai
,
H.
,
Yu
,
Y.
, and
Lin
,
Y.
,
2020
, “
Deep Learning Based Surface Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image
,”
IEEE Trans. Ind. Appl.
,
56
(
4
), pp.
3385
3396
.
59.
Haykin
,
S.
,
2001
,
Redes Neurais: princípios e prática
, 2nd ed.,
tradução Paulo Martins Engel
,
Bookman, Porto Alegre
,
Cap, 1(2)
,
3
.
60.
Bedi
,
J.
, and
Toshniwal
,
D.
,
2019
, “
Deep Learning Framework to Forecast Electricity Demand
,”
Appl. Energy
,
238
, pp.
1312
1326
.
61.
Valerie
,
S.
,
2012
, “
Wind and Solar Portfolios and Their Impact on Predictability. German Case Study 2010–2011
,”
International Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants
,
Lisbon, Portugal
,
Nov. 13–15
,
IEEE
.
You do not currently have access to this content.