Abstract

This paper presents the Lyapunov stability theory-based nonlinear controller design for a standalone photovoltaic (PV) system. The comparative analysis of different nonlinear controllers is also carried out. Due to the nonlinear I-V characteristics of photovoltaic systems, conventional hill-climbing methods like Perturbate and Observe and Incremental Conductance do not show reliable tracking of maximum power under various uncertainties. Therefore, these methods require nonlinear tools to meet control objectives and design specifications. Out of various nonlinear controlling techniques, the one presented in this paper is the sliding mode approach for maximum power point tracking (MPPT). In the context of Lyapunov stability theory, the sliding mode approach uses a switching manifold. In this approach, the system trajectories are made to follow the sliding surface and remain there forever to ensure the stability of equilibrium points. Two types of sliding mode controllers have been simulated, namely, conventional—sliding mode controller (CSMC) and terminal—sliding mode controller (TSMC). The results are analyzed and compared scientifically on various performance parameters including duty cycle ratio, ideal and PV output power, and time taken for error convergence, under varying dynamic conditions. All the control algorithms are developed in matlab/Simulink.

References

1.
Irfan
,
M.
,
Zhao
,
Z. Y.
,
Ikram
,
M.
,
Gilal
,
N. G.
,
Li
,
H.
, and
Rehman
,
A.
,
2020
, “
Assessment of India’s Energy Dynamics: Prospects of Solar Energy
,”
J. Renewable Sustainable Energy
,
12
(
5
), p.
053701
.
2.
Piegari
,
L.
, and
Rizzo
,
R.
,
2010
, “
Adaptive Perturb and Observe Algorithm for Photovoltaic Maximum Power Point Tracking
,”
IET Renewable Power Gener.
,
4
(
4
), pp.
317
328
.
3.
Elgendy
,
M.
,
Zahawi
,
B.
, and
Atkinson
,
D. J.
,
2012
, “
Evaluation of Perturb and Observe MPPT Algorithm Implementation Techniques
,”
6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012)
,
Bristol, UK
,
Mar. 27–29, 2012
, pp.
110
116
.
4.
Ballaji
,
A.
,
Hediyal
,
N.
,
Mandi
,
P. R.
, and
Swamy
,
N. K.
,
2018
, “
Design and Implementation of Perturb and Observation Maximum Power Point Transfer (MPPT) Algorithm for Photovoltaic System
,”
Int. J. Eng. Res. Appl.
,
8
(
5
), pp.
16
23
.
5.
Al-Diab
,
A.
, and
Sourkounis
,
C.
,
2010
, “
Variable Step Size P&O MPPT Algorithm for PV Systems
,”
12th International Conference on Optimization of Electrical and Electronic Equipment
,
Basov, Romania
,
May 20–22, 2010
, pp.
1097
1102
.
6.
Qin
,
S.
,
Wang
,
M.
,
Chen
,
T.
, and
Yao
,
X.
,
2011
, “
Comparative Analysis of Incremental Conductance and Perturb-and-Observation Methods to Implement MPPT in Photovoltaic System
,”
International Conference on Electrical and Control Engineering
,
Yichang, China
,
Sept. 16–18, 2011
, pp.
5792
5795
.
7.
Harini
,
K.
, and
Syama
,
S.
,
2015
, “
Simulation and Analysis of Incremental Conductance and Perturb and Observe MPPT With DC-DC Converter Topology for PV Array
,”
IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT)
,
Coimbatore, India
,
Mar. 5–7, 2015
, pp.
1
5
.
8.
Kjær
,
S. B.
,
2012
, “
Evaluation of the “Hill Climbing” and the “Incremental Conductance” Maximum Power Point Trackers for Photovoltaic Power Systems
,”
IEEE Trans. Energy Convers.
,
27
(
4
), pp.
922
929
.
9.
Putri
,
R.
,
Wibowo
,
S.
, and
Rifa’I
,
M.
,
2015
, “
Maximum Power Point Tracking for Photovoltaic Using Incremental Conductance Method
,”
Energy Procedia
,
68
(
5
), pp.
22
30
.
10.
Zainuri
,
M. A. A. M.
,
Radzi
,
M. A. M.
,
Che Soh
,
A.
, and
Rahim
,
N. A.
,
2014
, “
Development of Adaptive Perturb and Observe-Fuzzy Control Maximum Power Point Tracking for Photovoltaic Boost dc-dc Converter
,”
IET Renewable Power Gener.
,
8
(
2
), pp.
183
194
.
11.
Abdelkader
,
H. I.
,
Hatata
,
A. Y.
, and
Hasan
,
M. S.
,
2015
, “
Developing Intelligent MPPT for PV Systems Based on ANN and P&O Algorithms
,”
Int. J. Sci. Eng. Res.
,
6
(
2
), pp.
367
373
.
12.
Blange
,
R.
,
Mahanta
,
C.
, and
Gogoi
,
A. K.
,
2015
, “
MPPT of Solar Photovoltaic Cell Using Perturb & Observe and Fuzzy Logic Controller Algorithm for Buck-Boost DC-DC Converter
,”
International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE)
,
Shillong, India
,
June 12–13, 2015
, pp.
1
5
.
13.
Selman
,
N. H.
, and
Mahmood
,
J. R.
,
2016
, “
“Comparison Between Perturb & Observe, Incremental Conductance and Fuzzy Logic MPPT Techniques at Different Weather Conditions
,”
Int. J. Innovative Res. Sci. Eng. Technol.
,
5
(
7
), pp.
12556
12569
.
14.
Khateb
,
A. E.
,
Rahim
,
N.
,
Selvaraj
,
J.
, and
Uddin
,
M. N.
,
2014
, “
Fuzzy-Logic-Controller-Based SEPIC Converter for Maximum Power Point Tracking
,”
IEEE Trans. Ind. Appl.
,
50
(
4
), pp.
2349
2358
.
15.
Farhat
,
M.
,
Barambones
,
O.
, and
Sbita
,
L.
,
2017
, “
A new Maximum Power Point Method Based on a Sliding Mode Approach for Solar Energy Harvesting
,”
Appl. Energy
,
185
(
2
), pp.
1185
1198
.
16.
Cabal
,
C.
,
Salamero
,
L. M.
,
Seguier
,
L.
,
Alonso
,
C.
, and
Guinjoan
,
F.
,
2014
, “
‘Maximum Power Point Tracking Based on Sliding Mode Control for Output Series Connected Converters in Photovoltaic Systems’
,”
IET Power Electron.
,
7
(
4
), pp.
914
923
.
17.
Chiu
,
C. S.
,
Ouyang
,
Y. L.
, and
Ku
,
C. Y.
,
2012
, “
‘Terminal Sliding Mode Control for Maximum Power Point Tracking of Photovoltaic Power Generation Systems’
,”
Sol. Energy
,
86
(
10
), pp.
2986
2995
.
18.
Vega
,
P. V.
, and
Hirzinger
,
G.
,
2001
, “
Chattering-free Sliding Mode Control for a Class of Nonlinear Mechanical Systems
,”
J. Robust Nonlinear Control
,
11
(
12
), pp.
1161
1178
.
19.
Saad
,
W.
,
Sellami
,
A.
, and
Garcia
,
G.
,
2018
, “
Terminal Sliding Mode Control-Based MPPT for a Photovoltaic System With Uncertainties
,”
Int. J. Modell. Identif. Control
,
29
(
2
), pp.
118
126
.
20.
Afghoul
,
H.
,
Chikouche
,
D.
,
Krim
,
F.
, and
Beddar
,
A.
,
2013
, “
A Comparative Study Between Sliding Mode Controller and P and O Controller Applied to MPPT
,”
Proceedings of 2013 International Renewable and Sustainable Energy Conference (IRSEC)
,
Ouarzazate, Morocco
,
Mar. 7–9
, pp.
112
117
.
21.
Kchaou
,
A.
,
Naamane
,
A.
,
Koubaa
,
Y.
, and
M’Sirdi
,
N.
,
2017
, “
Second Order Sliding Mode-Based MPPT Control for Photovoltaic Applications
,”
Sol. Energy
,
155
(
15
), pp.
758
769
.
22.
Zhu
,
Y.
, and
Fei
,
J.
,
2017
, “
Adaptive Global Fast Terminal Sliding Mode Control of Grid-Connected Photovoltaic System Using Fuzzy Neural Network Approach
,”
IEEE Access
,
5
, pp.
9476
9484
.
23.
Azevedo
,
G. M. S.
,
Cavalcanti
,
M. C.
,
Oliveira
,
K. C.
,
Neves
,
F. A. S.
, and
Lins
,
Z. D.
,
2009
, “
Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031006
.
24.
Koshkouei
,
A. J.
, and
Zinober
,
A. S. I.
,
2000
, “
Sliding Mode Control of Discrete-Time Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
4
), pp.
793
802
.
You do not currently have access to this content.