Abstract

The effects of wind speed (F) and angle (θ) on the photovoltaic (PV) cells’ (monocrystalline silicon and triple-junction GaAs solar cells) temperature (T) and output characteristics (the short-circuit current (Isc), the open-circuit voltage (Voc) and the maximum power (Pmax)) have been studied experimentally and analyzed theoretically. The results first show that T and Isc of both cells decrease, but Voc and Pmax of both cells increase with an increase in F (θ). The reason is that the increase of F (θ) results in the heat exchange between the PV modules and the external environment increasing and tending to be stable. Second, T, Isc, Voc, and Pmax change rate of silicon cell are found to be more affected by F (θ) than that of GaAs cell. The reason is that the temperature coefficient of silicon cell is larger than that of GaAs cell. Finally, T, Isc, Voc, and Pmax of both cells are more sensitive to F than θ. This is because the cell’s temperature changes depend more strongly on F.

References

1.
Al-Showany
,
E. F. A.
,
2016
, “
The Impact of the Environmental Condition on the Performance of the Photovoltaic Cell
,”
Am. J. Energy Eng.
,
4
(
1
), pp.
1
7
.
2.
Tina
,
G. M.
,
2017
, “
Simulation Model of Photovoltaic and Photovoltaic/Thermal Module/String Under Nonuniform Distribution of Irradiance and Temperature
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021013
.
3.
Carneiro
,
T. C.
,
Carvalho
,
P. C. M. d.
,
Santos
,
H. A. d.
,
Lima
,
M. A. F. B.
, and
Braga
,
A. P. d. S.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
4.
Wu
,
J.
,
Wang
,
H.
,
Huang
,
Y.
, and
Su
,
Z.
,
2019
, “
Solar-Powered Aircraft Endurance Map
,”
J. Guid. Control Dyn.
,
42
(
3
), pp.
687
694
.
5.
Park
,
S. W.
,
Shin
,
J. W.
, and
Kim
,
T. U.
,
2018
, “
Development of the Main Wing Structure of a High Altitude Long Endurance UAV
,”
Int. J. Aeronaut. Space
,
19
(
1
), pp.
53
71
.
6.
Buckley
,
H. P.
,
Holt
,
N.
,
Leinonen
,
A.
,
Fournier
,
S.
, and
Zingg
,
D.
,
2020
, “
Preliminary Design of a Solar-Powered Hybrid Airship
,”
J. Aircr.
,
57
(
2
), pp.
1
12
.
7.
Ahn
,
H.
, and
Ahn
,
J.
,
2019
, “
Design and Analysis of a Solar-Power Mini-UAV for Extended Endurance at Low Altitude
,”
Int. J. Aeronaut. Space Sci.
,
20
(
2
), pp.
561
569
.
8.
George
,
K.
,
David
,
W. A.
,
James
,
P. O. B.
, and
Sanjiv
,
S.
,
2001
, “
Collection of Environmental Data From an Airship Platform
,”
Proc. SPIE
,
4571
, pp.
76
83
.
9.
Bhattacharya
,
T.
,
Chakraborty
,
A. K.
, and
Pal
,
K.
,
2014
, “
Effects of Ambient Temperature and Wind Speed on Performance of Monocrystalline Solar Photovoltaic Module in Tripura, India
,”
J. Sol. Energy
,
2014
(
3
), pp.
1
5
.
10.
Abdallah
,
M.
,
Khaiyat
,
A.
,
Basaheeh
,
A.
,
Kotsovos
,
K.
,
Ballard
,
I.
,
AlSaggaf
,
A.
,
Gereige
,
I.
, and
Theron
,
R.
,
2021
, “
Soiling Loss Rate Measurements of Photovoltaic Modules in a Hot and Humid Desert Environment
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031005
.
11.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Kamalisarvestani
,
M.
,
2012
, “
Effect of Dust, Humidity and Air Velocity on Efficiency of Photovoltaic Cells
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
2920
2925
.
12.
John
,
K. K.
,
Marina
,
K.
, and
Kosmas
,
A. K.
,
2014
, “
Temperature and Wind Speed Impact on the Efficiency of PV Installations. Experience Obtained From Outdoor Measurements in Greece
,”
Renewable Energy
,
66
, pp.
612
624
.
13.
Mattei
,
M.
,
Notton
,
G.
,
Cristofari
,
C.
,
Muselli
,
M.
, and
Poggi
,
P.
,
2006
, “
Calculation of the Polycrystalline PV Module Temperature Using a Simple Method of Energy Balance
,”
Renewable Energy
,
31
(
4
), pp.
553
567
.
14.
Sharples
,
S.
, and
Charlesworth
,
P. S.
,
1998
, “
Full-Scale Measurements of Wind-Induced Convective Heat Transfer From a Roof-Mounted Flat Plate Solar Collector
,”
Sol. Energy
,
62
(
2
), pp.
69
77
.
15.
Ernani
,
S.
,
2019
, “
Convection Coefficient Equations for Forced air Flow Over Flat Surfaces
,”
Sol. Energy
,
80
(
9
), pp.
1063
1071
.
16.
Wu
,
J.
,
Wang
,
H.
,
Huang
,
Y.
,
Su
,
Z.
, and
Zhang
,
M.
,
2019
, “
Energy Management Strategy for Solar-Powered UAV Long-Endurance Target Tracking
,”
IEEE Trans. Aerosp. Electron. Syst.
,
55
(
4
), pp.
1878
1891
.
17.
Garcia
,
M. C. A.
, and
Balenzategui
,
J. L.
,
2004
, “
Estimation of Photovoltaic Module Yearly Temperature and Performance Based on Nominal Operation Cell Temperature Calculations
,”
Renewable Energy
,
29
(
12
), pp.
1997
2010
.
18.
Soto
,
W. D.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
2006
, “
Improvement and Validation of a Model for Photovoltaic Array Performance
,”
Sol. Energy
,
80
(
1
), pp.
78
88
.
19.
Yang
,
W.
,
Lo
,
C.
,
Wei
,
C.
, and
Lour
,
W.
,
2011
, “
Cell-Temperature Determination in InGaP–(In)GaAs–Ge Triple-Junction Solar Cells
,”
IEEE Electron Device Lett.
,
32
(
10
), pp.
1412
1414
.
20.
Priyanka
,
S.
,
Singh
,
S. N.
,
Lal
,
M.
, and
Husain
,
M.
,
2008
, “
Temperature Dependence of I–V Characteristics and Performance Parameters of Silicon Solar Cell
,”
Sol. Energy Mater. Sol. Cells
,
92
(
12
), pp.
1611
1616
.
21.
Kensuke
,
N.
,
Tatsuya
,
T.
,
Takaaki
,
A.
,
Minoru
,
K.
,
Yukiharu
,
U.
, and
Takashi
,
F.
,
2006
, “
Annual Output Estimation of Concentrator Photovoltaic Systems Using High-Efficiency InGaP/InGaAs/Ge Triple-Junction Solar Cells Based on Experimental Solar Cell’s Characteristics and Field-Test Meteorological Data
,”
Sol. Energy Mater. Sol. Cells
,
90
(
1
), pp.
57
67
.
22.
Cotfas
,
D. T.
,
Cotfas
,
P. A.
, and
Machidon
,
O. M.
,
2018
, “
Study of Temperature Coefficients for Parameters of Photovoltaic Cells
,”
Int. J. Photoenergy
,
2018
(
1
), pp.
1
12
.
23.
Kendoush
,
A. A.
,
2009
, “
Theoretical Analysis of Heat and Mass Transfer to Fluids Flowing Across a Flat Plate
,”
Int. J. Therm. Sci.
,
48
(
1
), pp.
188
194
.
You do not currently have access to this content.