Abstract

Piecewise-focusing (PWF) collectors replace the heliostat field and central tower receiver of Gen 2 concentrating solar thermal (CST) power plants. The PWF collector consists of a large base frame supporting a tiered array of reflectors that concentrate sunlight into a cavity receiver. The base frame rotates about a central pivot to track the sun in azimuth, while the reflectors rotate about individual nearly horizontal inclined axes to track the sun in elevation. Compressed gas such as CO2 is used as the heat transfer fluid (HTF) from the receiver to a conventional molten-salt thermal reservoir, which supplies heat for a steam turbine power block. Physical and numerical modeling of an approximately paraboloidal PWF collector shows that about 250 separate reflectors will be required for adequate focus on the entrance to a cavity receiver at a concentration ratio of 2000 with little spillage at all sun elevations. With an area of 10–20 times larger than the cavity entrance, the absorber functions at peak temperatures that are within range of standard stainless steel tubing, despite using a gaseous HTF. Reflectors of PWF collectors have significantly better cosine factors than heliostats, and cavity receivers lose much less heat than open cylindrical receivers, so that reflector area is reduced to about 62% of heliostat area. Thus, the capital cost of a CST plant can be reduced substantially. By continuing to use Gen 2 technology for thermal storage and the power block, PWF-based CST can be developed much sooner than “Gen 3” CST.

References

1.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
,
Concentrating Solar Power Gen3 Demonstration Roadmap
,
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/TP-5500-67464.
2.
National Renewable Energy Laboratory
,
2021
,
Concentrating Solar Power Projects: Solana Generating Station CSP Project
,
National Renewable Energy Laboratory
,
Golden, CO
, December 5, 2021, https://solarpaces.nrel.gov/project/solana-generating-station
3.
Relloso
,
S.
, and
Gutierrez
,
Y.
,
2017
, “
SENER Molten Salt Tower Technology. Ouarzazate NOOR III Case
,”
AIP Conf. Proc.
,
1850
, p.
030041
.
4.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J. E.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2019
, “
On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011009
.
5.
Gonzalez-Portillo
,
L. F.
,
Albrecht
,
K. J.
,
Sment
,
J.
,
Mills
,
B.
, and
Ho
,
C. K.
,
2022
, “
Sensitivity Analysis of the Levelized Cost of Electricity for a Particle-Based Concentrating Solar Power System
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031002
.
6.
Ho
,
C. K.
,
Carlson
,
M.
,
Albrecht
,
K. J.
,
Ma
,
Z.
,
Jeter
,
S.
, and
Nguyen
,
C. M.
,
2019
, “
Evaluation of Alternative Designs for a High Temperature Particle-to-sCO2 Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021001
.
7.
Dunham
,
M.
, and
Iverson
,
B.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
30
(
C
), pp.
758
770
.
8.
Falcone
,
P.
,
1986
,
A Handbook for Solar Central Receiver Design
,
Sandia National Laboratories
,
Livermore, CA
, Report No. SAND 86-8009.
9.
Baum
,
V.
,
Aparasi
,
R.
, and
Garf
,
B.
,
1957
, “
High-Power Solar Installations
,”
Sol. Energy
,
1
(
1
), pp.
6
12
.
10.
Li
,
L.
,
Coventry
,
J.
,
Bader
,
R.
,
Pye
,
J.
, and
Lipiński
,
W.
,
2016
, “
Optics of Solar Central Receiver Systems: A Review
,”
Opt. Express
,
24
(
14
), pp.
A985
A1007
.
11.
Jones
,
D.
,
1982
, “
Heliostatic Solar Energy Conversion System
,” U.S. Patent No. 4,365,618.
12.
Ruiz
,
V.
,
Frasquet
,
M.
,
Martínez
,
F.
,
Silva
,
M.
,
Lillo
,
I.
,
Díaz Andrades
,
F.
, and
Lobo Márquez
,
G.
,
2014
, “
The Variable Geometry Central Receiver System Concept. First Results and Comparison With Conventional Central Receiver Systems
,”
Energy Procedia
,
57
, pp.
2255
2264
.
13.
Kolb
,
G.
,
Jones
,
S.
,
Donnelly
,
M.
,
Gorman
,
D.
,
Thomas
,
R.
,
Davenport
,
R.
, and
Lumia
,
R.
,
2007
,
Heliostat Cost Reduction Study
,
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2007-3293.
14.
Bisset
,
D.
,
2016
, “
Testing the ‘Segmented Dish’ Piecewise-Focusing Solar Collector
,”
Proceedings of the Asia Pacific Solar Research Conference 2016
,
Canberra
,
Nov. 29
.
15.
Bisset
,
D.
,
2017
, “
Images Formed by a Piecewise-Focusing Solar Collector
,”
Proceedings of the Asia Pacific Solar Research Conference 2017
,
Melbourne
,
Dec. 5
.
16.
Coventry
,
J.
, and
Pye
,
J.
,
2014
, “
Heliostat Cost Reduction—Where to Now?
,”
Energy Procedia
,
49
, pp.
60
70
.
17.
Sedighi
,
M.
,
Padilla
,
R.
,
Izadgoshasb
,
I.
, and
Rose
,
A.
,
2019
, “
High-Temperature, Point-Focus, Pressurised Gas-Phase Solar Receivers: A Comprehensive Review
,”
Energy Convers. Manage.
,
185
, pp.
678
717
.
18.
Kim
,
J.
,
Kim
,
J.-S.
, and
Stein
,
W.
,
2015
, “
Simplified Heat Loss Model for Central Tower Solar Receiver
,”
Sol. Energy
,
116
, pp.
314
322
.
19.
Pacheco
,
J.
, ed.,
2002
,
Final Test and Evaluation Results From the Solar Two Project
,
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2002-0120.
20.
Pye
,
J.
,
Coventry
,
J.
,
Venn
,
F.
,
Zapata
,
J.
,
Abbasi
,
E.
,
Asselineau
,
C.-A.
,
Burgess
,
G.
,
Hughes
,
G.
, and
Logie
,
W.
,
2017
, “
Experimental Testing of a High-Flux Cavity Receiver
,”
AIP Conf. Proc.
,
1850
(
1
), p.
110011
.
21.
Atlas Steels
,
2020
,
Atlas Steels Product Reference Manual (July 2020)
,
Atlas Steels
,
Melbourne, Australia
, https://atlassteels.com.au/wp-content/uploads/2021/08/Atlas-Steels-Product-Manual-Section-4.pdf
22.
American Society for Metals Handbook Committee
,
1989
,
Metals Handbook
, 9th ed.,
American Society for Metals
,
Metals Park, OH
.
23.
Incropera
,
F.
, and
DeWitt
,
D.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
John Wiley & Sons
,
New York
.
24.
Besarati
,
S. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2015
, “
Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031018
.
25.
Kerkhoff
,
J. A.
, and
Wagner
,
M. J.
,
2021
, “
A Flexible Thermal Model for Solar Cavity Receivers Using Analytical View Factors
,”
ASME 15th International Conference on Energy Sustainability
, Paper No. ES2021-63810.
26.
Kolb
,
G.
,
Ho
,
C.
,
Mancini
,
T.
, and
Gary
,
J.
,
2011
,
Power Tower Technology Roadmap and Cost Reduction Plan
,
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2011-2419.
27.
Australian Energy Regulator
,
2020
,
Wholesale Markets Quarterly, Q2 2020
,
Australian Energy Regulator
,
Melbourne
.
You do not currently have access to this content.