Abstract

Overheating of solar cells under normal operational conditions highly reduces their energy harvesting efficiency and produces additional problems related to thermal cycling and performance degradation of the modules. In this paper, a novel cooling system for solar photovoltaics, using the underground as a heat sink, is proposed, theoretically described and experimentally validated. A prototype of the technology (including a single-axis sun tracking mechanism) has been designed, manufactured, and rigorously tested in outdoor conditions during summer 2021 in Spain, under different environmental conditions. The excess heat is removed from the backside of the solar module by a close-loop and single-phase cooling system and then dissipated in the underground, which is at a constant temperature of about 16 °C at relatively low depths at the location where tests were performed. A single U-shaped copper tube, 18 mm in diameter, immersed in a 15.5-m-deep borehole naturally filled with water, is used as an underground heat exchanger. As a consequence of the reduction of the cooled module temperature, its net power generation is significantly increased. A promising improvement of the net power generation of the cooled solar module up to 12.4% has been measured for a coolant flowrate of 1.84 l/min per square meter of solar module, proving the technical feasibility of the approach. In addition, a dependency of the power gain with the pump efficiency, the global radiation, and ambient temperature has been observed.

References

1.
Benda
,
V.
, and
Černá
,
L.
,
2020
, “
PV Cells and Modules—State of the Art, Limits and Trends
,”
Heliyon
,
6
(
12
), p.
e05666
.
2.
Duan
,
C.
,
Zhao
,
Z.
, and
Yuan
,
L.
,
2021
, “
Lead-Free Cesium-Containing Halide Perovskite and Its Application in Solar Cells
,”
IEEE J. Photovolt.
,
11
(
5
), pp.
1126
1135
.
3.
Sher
,
H. A.
,
Rizvi
,
A. A.
,
Addoweesh
,
K. E.
, and
Al-Haddad
,
K.
,
2017
, “
A Single-Stage Stand-Alone Photovoltaic Energy System With High Tracking Efficiency
,”
IEEE Trans. Sustainable Energy
,
8
(
2
), pp.
755
762
.
4.
Alata
,
M.
,
Al-Nimr
,
M. A.
, and
Qaroush
,
Y.
,
2005
, “
Developing a Multipurpose Sun Tracking System Using Fuzzy Control
,”
Energy Convers. Manage.
,
46
(
7–8
), pp.
1229
1245
.
5.
Ghiassi-Farrokhfal
,
Y.
,
Kazhamiaka
,
F.
,
Rosenberg
,
C.
, and
Keshav
,
S.
,
2015
, “
Optimal Design of Solar PV Farms With Storage
,”
IEEE Trans. Sustainable Energy
,
6
(
4
), pp.
1586
1593
.
6.
Libra
,
M.
,
Petrik
,
T.
,
Poulek
,
V.
,
Tyukhov
,
I. I.
, and
Kourim
,
P.
,
2021
, “
Changes in the Efficiency of Photovoltaic Energy Conversion in Temperature Range With Extreme Limits
,”
IEEE J. Photovolt.
,
11
(
6
), pp.
1479
1484
.
7.
Alonso García
,
M. C.
, and
Balenzategui
,
J. L.
,
2004
, “
Estimation of Photovoltaic Module Yearly Temperature and Performance Based on Nominal Operation Cell Temperature Calculations
,”
Renewable Energy
,
29
(
12
), pp.
1997
2010
.
8.
Dida
,
M.
,
Boughali
,
S.
,
Bechki
,
D.
, and
Bouguettaia
,
H.
,
2021
, “
Experimental Investigation of a Passive Cooling System for Photovoltaic Modules Efficiency Improvement in Hot and Arid Regions
,”
Energy Convers. Manage.
,
243
, p.
114328
.
9.
Dubey
,
S.
,
Sarvaiya
,
J. N.
, and
Seshadri
,
B.
,
2013
, “
Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review
,”
Energy Procedia
,
33
, pp.
311
321
.
10.
Kim
,
J.
,
Rabelo
,
M.
,
Padi
,
S. P.
,
Yousuf
,
H.
,
Cho
,
E. C.
, and
Yi
,
J.
,
2021
, “
A Review of the Degradation of Photovoltaic Modules for Life Expectancy
,”
Energies
,
14
(
14
), p.
4278
.
11.
Duck
,
B. C.
,
Fell
,
C. J.
,
Anderson
,
K. F.
,
Sacchetta
,
C.
,
Du
,
Y.
, and
Zhu
,
Y.
,
2018
, “
Determining the Value of Cooling in Photovoltaics for Enhanced Energy Yield
,”
Sol. Energy
,
159
, pp.
337
345
.
12.
Mittelman
,
G.
,
Alshare
,
A.
, and
Davidson
,
J. H.
,
2009
, “
A Model and Heat Transfer Correlation for Rooftop Integrated Photovoltaics With a Passive Air Cooling Channel
,”
Sol. Energy
,
83
(
8
), pp.
1150
1160
.
13.
Arifin
,
Z.
,
Suyitno
,
S.
,
Tjahjana
,
D. D. D. P.
,
Juwana
,
W. E.
,
Putra
,
M. R. A.
, and
Prabowo
,
A. R.
,
2020
, “
The Effect of Heat Sink Properties on Solar Cell Cooling Systems
,”
Appl. Sci.
,
10
(
21
), p.
7919
.
14.
Abdollahi
,
N.
, and
Rahimi
,
M.
,
2020
, “
Using a Novel Phase Change Material-Based Cooling Tower for a Photovoltaic Module Cooling
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021003
.
15.
Nižetić
,
S.
,
Jurčević
,
M.
,
Čoko
,
D.
, and
Arıcı
,
M.
,
2021
, “
A Novel and Effective Passive Cooling Strategy for Photovoltaic Panel
,”
Renewable Sustainable Energy Rev.
,
145
, p.
111164
.
16.
Anderson
,
W. G.
,
Dussinger
,
P. M.
,
Sarraf
,
D. B.
, and
Tamanna
,
S.
,
2008
, “
Heat Pipe Cooling of Concentrating Photovoltaic Cells
,”
Proceedings of the 33rd IEEE Photovoltaic Specialists Conference
,
San Diego, CA
,
May 11–16
, pp.
1
6
.
17.
Dwivedi
,
P.
,
Sudhakar
,
K.
,
Soni
,
A.
,
Solomin
,
E.
, and
Kirpichnikova
,
I.
,
2020
, “
Advanced Cooling Techniques of P.V. Modules: A State of Art
,”
Case Stud. Therm. Eng.
,
21
, p.
100674
.
18.
Natarajan
,
S. K.
,
Mallick
,
T. K.
,
Katz
,
M.
, and
Weingaertner
,
S.
,
2011
, “
Numerical Investigations of Solar Cell Temperature for Photovoltaic Concentrator System With and Without Passive Cooling Arrangements
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2514
2521
.
19.
Ahmad
,
E. Z.
,
Sopian
,
K.
,
Fazlizan
,
A.
,
Jarimi
,
H.
, and
Ibrahim
,
A.
,
2022
, “
Outdoor Performance Evaluation of a Novel Photovoltaic Heat Sinks to Enhance Power Conversion Efficiency and Temperature Uniformity
,”
Case Stud. Therm. Eng.
,
31
, p.
101811
.
20.
Reddy
,
S. R.
,
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2015
, “
A Review of PV–T Systems: Thermal Management and Efficiency With Single Phase Cooling
,”
Int. J. Heat Mass Transfer
,
91
, pp.
861
871
.
21.
Tang
,
X.
,
Quan
,
Z.
,
Zhao
,
Y.
,
Tang
,
X.
,
Quan
,
Z.
, and
Zhao
,
Y.
,
2010
, “
Experimental Investigation of Solar Panel Cooling by a Novel Micro Heat Pipe Array
,”
Energy Power Eng.
,
2
(
3
), pp.
171
174
.
22.
Singh
,
P.
,
Khanna
,
S.
,
Newar
,
S.
,
Sharma
,
V.
,
Reddy
,
K. S.
,
Mallick
,
T. K.
,
Becerra
,
V.
,
Radulovic
,
J.
,
Hutchinson
,
D.
, and
Khusainov
,
R.
,
2020
, “
Solar Photovoltaic Panels With Finned Phase Change Material Heat Sinks
,”
Energies
,
13
(
10
), p.
2558
.
23.
Du
,
D.
,
Darkwa
,
J.
, and
Kokogiannakis
,
G.
,
2013
, “
Thermal Management Systems for Photovoltaics (PV) Installations: A Critical Review
,”
Sol. Energy
,
97
, pp.
238
254
.
24.
Sainthiya
,
H.
,
Beniwal
,
N. S.
, and
Garg
,
N.
,
2018
, “
Efficiency Improvement of a Photovoltaic Module Using Front Surface Cooling Method in Summer and Winter Conditions
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061009
.
25.
Bahaidarah
,
H. M. S.
,
2016
, “
Experimental Performance Evaluation and Modeling of Jet Impingement Cooling for Thermal Management of Photovoltaics
,”
Sol. Energy
,
135
, pp.
605
617
.
26.
Nižetić
,
S.
,
Čoko
,
D.
,
Yadav
,
A.
, and
Grubišić-Čabo
,
F.
,
2016
, “
Water Spray Cooling Technique Applied on a Photovoltaic Panel: The Performance Response
,”
Energy Convers. Manage.
,
108
, pp.
287
296
.
27.
Tiwari
,
A. K.
,
Sontake
,
V. C.
, and
Kalamkar
,
V. R.
,
2020
, “
Enhancing the Performance of Solar Photovoltaic Water Pumping System by Water Cooling Over and Below the Photovoltaic Array
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021005
.
28.
Kim
,
D.-J.
,
Kim
,
D. H.
,
Bhattarai
,
S.
, and
Oh
,
J.-H.
,
2011
, “
Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041012
.
29.
Pasquale
,
V.
,
Verdoya
,
M.
, and
Chiozzi
,
P.
,
1998
, “
Climate Change From Meteorological Observations and Underground Temperatures in Northern Italy
,”
Stud. Geophys. Geod.
,
42
(
1
), pp.
30
40
.
30.
Alam
,
M. R.
,
Zain
,
M. F. M.
,
Kaish
,
A. B. M. A.
, and
Jamil
,
M.
,
2015
, “
Underground Soil and Thermal Conductivity Materials Based Heat Reduction for Energy-Efficient Building in Tropical Environment
,”
Indoor Built Environ.
,
24
(
2
), pp.
185
200
.
31.
Katsura
,
T.
,
Sakata
,
Y.
,
Ding
,
L.
, and
Nagano
,
K.
,
2020
, “
Development of Simulation Tool for Ground Source Heat Pump Systems Influenced by Ground Surface
,”
Energies
,
13
(
17
), p.
4491
.
32.
Yang
,
L.-H.
,
Liang
,
J.-D.
,
Hsu
,
C.-Y.
,
Yang
,
T.-H.
, and
Chen
,
S.-L.
,
2019
, “
Enhanced Efficiency of Photovoltaic Panels by Integrating a Spray Cooling System With Shallow Geothermal Energy Heat Exchanger
,”
Renewable Energy
,
134
, pp.
970
981
.
33.
Kadhim
,
A. M.
, and
Aljubury
,
I. M. A.
,
2021
, “
Experimental Performance of Cooling Photovoltaic Panels Using Geothermal Energy in an Arid Climate
,”
Heat Transfer
,
50
(
3
), pp.
2725
2742
.
34.
Chenlo Romero
,
F.
,
2002
,
“Cálculo de La Temperatura de Operación de Células Solares En Un Panel Fotovoltaico Plano
,
CIEMAT
,
Spain
.
35.
Matson
,
R. J.
,
Emery
,
K. A.
, and
Bird
,
R. E.
,
1984
, “
Terrestrial Solar Spectra, Solar Simulation and Solar Cell Short-Circuit Current Calibration: A Review
,”
Sol. Cells
,
11
(
2
), pp.
105
145
.
36.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons
,
New York
.
37.
Lloyd
,
J. R.
, and
Moran
,
W. R.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat Transfer-Trans. ASME
,
96
(
4
), pp.
443
447
.
38.
Hammami
,
M.
,
Torretti
,
S.
,
Grimaccia
,
F.
, and
Grandi
,
G.
,
2017
, “
Thermal and Performance Analysis of a Photovoltaic Module with an Integrated Energy Storage System
,”
Appl. Sci.
,
7
(
11
), p.
1107
.
39.
Choulat
,
P.
,
Singh
,
S.
,
Tous
,
L.
,
Chen
,
J.
,
Liu
,
Z.
,
Duerinckx
,
F.
,
Gordon
,
I.
, and
Szlufcik
,
J.
,
2019
, “
Post-Processing Thickness Variation of PV Module Materials and Its Impact on Temperature, Mechanical Stress and Power
,”
Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition
,
Marseille, France
,
Sept. 9–13
, pp.
935
940
.
40.
Lu
,
Z. H.
, and
Yao
,
Q.
,
2007
, “
Energy Analysis of Silicon Solar Cell Modules Based on an Optical Model for Arbitrary Layers
,”
Sol. Energy
,
81
(
5
), pp.
636
647
.
41.
Dhaundiyal
,
A.
, and
Atsu
,
D.
,
2021
, “
Energy Assessment of Photovoltaic Modules
,”
Sol. Energy
,
218
, pp.
337
345
.
You do not currently have access to this content.