Abstract

In a sensible storage system, energy is stored based on the distribution of energy and exergy at the specified conditions. It is believed that the least temperature gradient leads to a higher exergy availability and lower entropy generation in a storage system. An energy storage unit with multiple passages fitted with wire coil inserts is evaluated in the present work by assessing the exergy stored and the entropy generation number for heat transfer fluid (HTF) inlet temperature range of 45–75 °C and HTF flowrate of 0.022–0.029 kg/s. The wire coil inserts have a (p/d) ratio in the range of 0.25–0.75. The maximum exergy storage rate in the energy storage unit is found to be 55.43 W corresponding to an energy storage unit having wire coil insert (p/d = 0.25) at the HTF inlet temperature of 75 °C and HTF flowrate of 0.029 kg/s. Entropy generation number of the system with wire coil inserts (p/d = 0.5), compared to smooth HTF passage, is found to be 42.32% at HTF flowrate and inlet temperature of 0.026 kg/s and 45 °C, respectively.

References

1.
Herrmann
,
U.
, and
Kearney
,
D. W.
,
2002
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
145
152
.
2.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renew. Sustain. Energy Rev.
,
14
(
1
), pp.
31
55
.
3.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
4.
Pitz-Paal
,
R.
,
Dersch
,
J.
,
Milow
,
B.
,
Téllez
,
F.
,
Ferriere
,
A.
,
Langnickel
,
U.
,
Steinfeld
,
A.
,
Karni
,
J.
,
Zarza
,
E.
, and
Popel
,
O.
,
2007
, “
Development Steps for Parabolic Trough Solar Power Technologies With Maximum Impact on Cost Reduction
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
371
377
.
5.
Dinker
,
A.
,
Agarwal
,
M.
, and
Agarwal
,
G. D.
,
2017
, “
Heat Storage Materials, Geometry and Applications: A Review
,”
J. Energy Inst.
,
90
(
1
), pp.
1
11
.
6.
Bejan
,
A.
,
2006
,
Advanced Engineering Thermodynamics
,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
7.
Fath
,
H. E. S.
,
1998
, “
Technical Assessment of Solar Thermal Energy Storage Technologies
,”
Renew. Energy
,
14
(
1–4
), pp.
35
40
.
8.
Hasnain
,
S. M.
,
1998
, “
Review of Sustainable Thermal Energy Storage Technologies, Part-I: Heat Storage Material and Techniques
,”
Energy Convers. Manage.
,
39
(
5–6
), pp.
1127
1138
.
9.
Pelay
,
U.
,
Luo
,
L.
,
Fan
,
Y.
,
Stitou
,
D.
, and
Rood
,
M.
,
2017
, “
Thermal Energy Storage Systems for Concentrated Solar Power Plants
,”
Renew. Sustain. Energy Rev.
,
79
, pp.
82
100
.
10.
Zhou
,
D.
,
Wu
,
S.
,
Wu
,
Z.
, and
Yu
,
X.
,
2021
, “
Thermal Performance Analysis of Multi-Slab Phase Change Thermal Energy Storage Unit With Heat Transfer Enhancement Approaches
,”
Renew. Energy
,
172
, pp.
46
56
.
11.
Kumar
,
R.
,
Pathak
,
A. K.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2021
, “
Experimental Study of Multi Tubular Sensible Heat Storage System Fitted With Wire Coil Inserts
,”
Renew. Energy
,
164
, pp.
1244
1253
.
12.
Molina
,
S.
,
Haillot
,
D.
,
Deydier
,
A.
, and
Bedecarrats
,
J. P.
,
2019
, “
Material Screening and Compatibility for Thermocline Storage Systems Using Thermal Oil
,”
Appl. Therm. Eng.
,
146
, pp.
252
259
.
13.
Alonso
,
M. C.
,
Vera-Agullo
,
J.
,
Guerreiro
,
L.
,
Flor-Laguna
,
V.
,
Sanchez
,
M.
, and
CollaresPereira
,
M.
,
2016
, “
Calcium Aluminate Based Cement for Concrete to be Used as Thermal Energy Storage in Solar Thermal Electricity Plants
,”
Cem. Concr. Res.
,
82
, pp.
74
86
.
14.
Emerson
,
J.
,
Hale
,
M.
, and
Selvam
,
P.
,
2013
, “
Concrete as a Thermal Energy Storage Medium for Thermocline Solar Energy Storage Systems
,”
Sol. Energy
,
96
, pp.
194
204
.
15.
Rao
,
C. R. C.
,
Niyas
,
H.
, and
Muthukumar
,
P.
,
2018
, “
Performance Tests on Lab-Scale Sensible Heat Storage Prototypes
,”
Appl. Therm. Eng.
,
129
, pp.
953
967
.
16.
Buscemi
,
A.
,
Panno
,
D.
,
Ciulla
,
G.
,
Beccali
,
M.
, and
Lo Brano
,
V.
,
2018
, “
Concrete Thermal Energy Storage for Linear Fresnel Collectors: Exploiting the South Mediterranean’s Solar Potential for Agri-Food Processes
,”
Energy Convers. Manage.
,
166
, pp.
719
734
.
17.
Rathore
,
P. K. S.
,
Shukla
,
S. K.
, and
Gupta
,
N. K.
,
2020
, “
Synthesis and Characterization of the Paraffin/Expanded Perlite Loaded With Graphene Nanoparticles as a Thermal Energy Storage Material in Buildings
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041006
.
18.
Nicodemus
,
J. H.
,
Smith
,
J. H.
,
Holme
,
A.
,
Johnson
,
S.
, and
Petitt
,
K.
,
2022
, “
The Effect of Pitch on Heat Transfer to an Immersed Heat Exchanger in a Solar Thermal Storage Tank With and Without a Baffle
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061010
.
19.
Yue
,
C.
,
Gao
,
P.
,
Xu
,
Y.
, and
Schaefer
,
L. A.
,
2022
, “
Investigation on a Solar Thermal Power Plant With a Packed Bed Heat Storage Unit
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041004
.
20.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Optimization of Fin Parameters to Reduce Entropy Generation and Melting Time of a Latent Heat Storage Unit
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061005
.
21.
Niyas
,
H.
,
Prasad
,
L.
, and
Muthukumar
,
P.
,
2015
, “
Performance Investigation of High-Temperature Sensible Heat Thermal Energy Storage System During Charging and Discharging Cycles
,”
Clean Technol. Environ. Policy
,
17
(
2
), pp.
501
513
.
22.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Energy and Exergy Analyses of Latent Heat Storage Unit Positioned at Different Orientations—An Experimental Study
,”
Energy
,
194
, p.
116924
.
23.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
New York
.
24.
Mawire
,
A.
,
2016
, “
Performance of Sunflower Oil as a Sensible Heat Storage Medium for Domestic Applications
,”
J. Energy Storage
,
5
, pp.
1
9
.
25.
Debnath
,
S.
,
Das
,
B.
,
Randive
,
P. R.
, and
Pandey
,
K. M.
,
2018
, “
Performance Analysis of Solar Air Collector in the Climatic Condition of North Eastern India
,”
Energy
,
165
, pp.
281
298
.
26.
Rosen
,
M. A.
,
2001
, “
The Exergy of Stratified Thermal Energy Storages
,”
Sol. Energy
,
71
(
3
), pp.
173
185
.
27.
Bejan
,
A.
,
1978
, “
Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage
,”
ASME J. Heat Transfer-Trans. ASME
,
100
(
4
), pp.
708
712
.
28.
Krane
,
R. J.
,
1987
, “
A Second Law Analysis of the Optimum Design and Operation of Thermal Energy Storage System
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
43
57
.
You do not currently have access to this content.