Abstract

Parabolic trough concentrated solar power (CSP) plants are particularly promising renewable sources of energy, whose easy integration with thermal energy storage (TES) systems allows to mitigate the intermittency of electricity generation. Currently, molten nitrates, with two tanks arrangement, are mainly used for sensible heat accumulation. To reduce costs and make the CSP storage systems more manageable, single tank configurations have been proposed, where the cold and hot fluids are stored in the same container and separated because of their density difference. The aim of the present work is to study the storage performances presented by two novel ternary and quaternary mixtures, proposed within the European project IN POWER. An experimental campaign was preliminarily performed to investigate the fluids thermo-physical properties, and the obtained values were utilized as input data to model the discharge phase in a thermocline tank. The simulation results were compared with the ones acquired considering two commercial materials, namely, solar salt and Hitec XL®. Overall, considering same temperature ranges, higher discharging times are obtained for the quaternary and ternary mixtures, with the ternary presenting a smaller thermocline thickness than the solar salt while this parameter is the same considering the quaternary and Hitec XL®.

References

1.
Ahmad
,
T.
, and
Zhang
,
D.
,
2020
, “
A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told So Far
,”
Energy Rep.
,
6
, pp.
1973
1991
.
2.
Abas
,
N.
,
Kalair
,
A.
, and
Khan
,
N.
,
2015
, “
Review of Fossil Fuels and Future Energy Technologies
,”
Futures
,
69
, pp.
31
49
.
3.
Abas
,
N.
,
Kalair
,
A. R.
,
Khan
,
N.
,
Haider
,
A.
,
Saleem
,
Z.
, and
Saleem
,
M. S.
,
2018
, “
Natural and Synthetic Refrigerants, Global Warming: A Review
,”
Renew. Sustain. Energy Rev.
,
90
, pp.
557
569
.
4.
Khan
,
N.
,
Dilshad
,
S.
,
Khalid
,
R.
,
Kalair
,
A. R.
, and
Abas
,
N.
,
2019
, “
Review of Energy Storage and Transportation of Energy
,”
Energy Storage
,
1
(
3
), p.
e49
.
5.
Sarbu
,
C.
, and
Sebarchievici
,
I.
,
2018
, “
A Comprehensive Review of Thermal Energy Storage
,”
Sustainability
,
10
(
1
), p.
191
.
6.
Crescenzi
,
T.
,
De Iuliis
,
S.
, and
Fontanella
,
A.
,
2017
, “
Archimede’s Mirrors and the Parabolic Dish
,” Energia, ambiente e innovazione, pp.
54
59
.
7.
IRENA
,
2012
, “
Renewable Energy Technologies Cost Analysis Series: Concentrating Solar Power
.”
8.
Delise
,
T.
,
Tizzoni
,
A. C.
,
Menale
,
C.
,
Telling
,
M.
,
Bubbico
,
R.
,
Crescenzi
,
T.
,
Corsaro
,
N.
,
Sau
,
S.
, and
Licoccia
,
S.
,
2020
, “
Technical and Economic Analysis of a CSP Plant Presenting a Low Freezing Ternary Mixture as Storage and Transfer Fluid
,”
Appl. Energy
,
265
, p.
114676
.
9.
Pacheco
,
J.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.
10.
Sihy
,
E. L.
,
Els
,
Z.
,
Liao
,
S.
,
Xu
,
C.
, and
Du
,
X.
,
2021
, “
Dynamic Characteristics of Solid Packed-Bed Thermocline Tank Using Molten-Salt as a Heat Transfer Fluid
,”
Int. J. Heat Mass Transf.
,
165
, p.
120677
.
11.
Li
,
M. J.
,
Qiu
,
Y.
, and
Li
,
M. J.
,
2018
, “
Cyclic Thermal Performance Analysis of a Traditional Single-Layered and of a Novel Multi-Layered Packed-Bed Molten Salt Thermocline Tank
,”
Renew. Energy
,
118
, pp.
565
578
.
12.
Klasing
,
F.
,
Hirsch
,
T.
,
Odenthal
,
C.
, and
Bauer
,
T.
,
2020
, “
Techno-Economic Optimization of Molten Salt Concentrating Solar Power Parabolic Trough Plants With Packed-Bed Thermocline Tanks
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051006
.
13.
Mira-Hernández
,
C.
,
Flueckiger
,
S. M.
, and
Garimella
,
S. V.
,
2015
, “
Comparative Analysis of Single- and Dual-Media Thermocline Tanks for Thermal Energy Storage in Concentrating Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031012
.
14.
Dong Ho Kim
,
J.
,
Yoon
,
S. H.
,
Kim
,
Y.
,
Song
,
C. H.
, and
Lee
,
K. H.
,
2017
, “
Experimental Studies of the Discharge Performance of Single-Medium TES for CSP Applications
,”
Appl. Therm. Eng.
,
127
, pp.
499
507
.
15.
Flueckiger
,
S. M.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2012
, “
Thermomechanical Simulation of the Solar One Thermocline Storage Tank
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041014
.
16.
Radosevich
,
L. G.
,
1988
, “
Final Report on the Power Production Phase of the 10 Mwe Solar Thermalcentral Receiver Pilot Plant
,” Livermore, https://www.osti.gov/biblio/7120228-final-report-power-production-phase-mw-sub-solar-thermal-central-receiver-pilot-plant
17.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2001
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy—The Power to Choose)
,
Washington, DC
,
Apr. 21
.
18.
Filali Baba
,
Y.
,
Ajdad
,
H.
,
Mers
,
A. A. L.
,
Grosu
,
Y.
, and
Faik
,
A.
,
2019
, “
Multilevel Comparison Between Magnetite and Quartzite as Thermocline Energy Storage Materials
,”
Appl. Therm. Eng.
,
149
, pp.
1142
1153
.
19.
Reddy
,
K. S.
,
Jawahar
,
V.
,
Sivakumar
,
S.
, and
Mallick
,
T. K.
,
2017
, “
Performance Investigation of Single-Tank Thermocline Storage Systems for CSP Plants
,”
Sol. Energy
,
144
, pp.
740
749
.
20.
Gaggioli
,
W.
,
Rinaldi
,
L.
, and
Tarquini
,
P.
,
2018
, “
Thermal Characterization of a Stratifying Molten Salts Storage Tank With Integrated Steam Generator in Real Operating Conditions
,”
AIP Conf. Proc.
,
2033
, p.
090011
.
21.
Rivas
,
E.
,
Rojas
,
E.
,
Bayón
,
R.
,
Gaggioli
,
W.
,
Rinaldi
,
L.
, and
Fabrizi
,
F.
,
2014
, “
CFD Model of a Molten Salt Tank With Integrated Steam Generator
,”
Energy Procedia
,
49
, pp.
956
964
.
22.
Capocelli
,
M.
,
Caputo
,
G.
,
De Falco
,
M.
,
Balog
,
I.
, and
Piemonte
,
V.
,
2019
, “
Numerical Modeling of a Novel Thermocline Thermal Storage for Concentrated Solar Power
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051001
.
23.
Votyakov
,
E. V. M.
, and
Bonanos
,
A. M.
,
2021
, “
Analysis of Thermocline Thermal Energy Storage Systems With Generic Initial Condition Algebraic Model
,”
Sol. Energy
,
213
, pp.
154
162
.
24.
Bruch
,
A.
,
Fourmigué
,
J. F.
, and
Couturier
,
R.
,
2014
, “
Experimental and Numerical Investigation of a Pilot-Scale Thermal Oil Packed Bed Thermal Storage System for CSP Power Plant
,”
Sol. Energy
,
105
, pp.
116
125
.
25.
Hänchen
,
M.
,
Brückner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks—Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1798
1806
.
26.
Hoffmann
,
J. F.
,
Fasquelle
,
T.
,
Goetz
,
V.
, and
Py
,
X.
,
2016
, “
A Thermocline Thermal Energy Storage System With Filler Materials for Concentrated Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales
,”
Appl. Therm. Eng.
,
100
, pp.
753
761
.
27.
Rodat
,
S.
,
Bruch
,
A.
,
Dupassieux
,
N.
, and
Mourchid
,
N. E.
,
2015
, “
Unique Fresnel Demonstrator Including ORC and Thermocline Direct Thermal Storage: Operating Experience
,”
Energy Procedia
,
69
, pp.
1667
1675
.
28.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renew. Sustain. Energy Rev.
,
14
(
1
), pp.
31
55
.
29.
Flueckiger
,
S. M.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2013
, “
Review of Molten-Salt Thermocline Tank Modeling for Solar Thermal Energy Storage
,”
Heat Transf. Eng.
,
34
(
10
), pp.
787
800
.
30.
Wang
,
Y.
,
Ortega-Fernández
,
I.
,
Li
,
H.
,
Huang
,
X.
,
Jiang
,
B.
, and
Bielsa
,
D.
,
2020
, “
Study of Dynamic Performance of Radiation Collector and Thermocline System Under Time-Varying Radiation Environment
,”
Sol. Energy
,
211
, pp.
962
970
.
31.
Caputo
,
G.
,
Balog
,
I.
,
Canneto
,
G.
, and
Mazzei
,
D.
,
2018
, “
Thermal Energy Storage With Molten Salt Thermocline
,”
Int. J. Agric. Environ. Biores.
,
3
(
4
), p.
256
.
32.
Iverson
,
B. D.
,
Bauer
,
S. J.
, and
Flueckiger
,
S. M.
,
2014
, “
Thermocline Bed Properties for Deformation Analysis
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041002
.
33.
Kolb
,
G. J.
,
Lee
,
G.
,
Mijatovic
,
P.
, and
Valmianski
,
E.
,
2011
, “
Thermal Ratcheting Analysis of Advanced Thermocline Energy Storage Tanks_SAND2011-5312C
,”
Albuquerque, NM
, https://www.osti.gov/servlets/purl/1106681
34.
Sassine
,
N.
,
Donzé
,
F.-V.
,
Bruch
,
A.
, and
Harthong
,
B.
,
2017
, “
Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction With Storage Tank
,”
AIP Conf. Proc.
,
1850
, p.
080023
.
35.
Brosseau
,
D. A.
,
Hlava
,
P. F.
, and
Kelly
,
M. J.
,
2004
, “
Testing Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems Used in Parabolic Trough Solar Power Plants
,” SANDIA REPORT-SAND2004-3207,
Technical Report
.
36.
Calvet
,
N.
,
Gomez
,
J. C.
,
Faik
,
A.
,
Roddatis
,
V. V.
,
Meffre
,
A.
,
Glatzmaier
,
G. C.
,
Doppiu
,
S.
, and
Py
,
X.
,
2013
, “
Compatibility of a Post-Industrial Ceramic With Nitrate Molten Salts for Use as Filler Material in a Thermocline Storage System
,”
Appl. Energy
,
109
, pp.
387
393
.
37.
Hoffmann
,
J.-F.
,
Fasquelle
,
T.
,
Vaitilingom
,
G.
,
Olives
,
R.
,
Py
,
X.
, and
Goetz
,
V.
,
2019
, “
Compatibility of Vegetable Oils With Solid Filler Materials for Thermocline Thermal Energy Storage Systems
,”
Sol. Energy Mater. Sol. Cells
,
200
, p.
109932
.
38.
Caraballo
,
A.
,
Galán-Casado
,
S.
,
Caballero
,
Á.
, and
Serena
,
S.
,
2021
, “
Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis
,”
Energies
,
14
(
4
), p.
1197
.
39.
Delise
,
T.
,
Tizzoni
,
A. C.
,
Ferrara
,
M.
,
Corsaro
,
N.
,
D’Ottavi
,
C.
,
Sau
,
S.
, and
Licoccia
,
S.
,
2019
, “
Thermophysical, Environmental, and Compatibility Properties of Nitrate and Nitrite Containing Molten Salts for Medium Temperature CSP Applications: A Critical Review
,”
J. Eur. Ceram. Soc.
,
39
(
1
), pp.
92
99
.
40.
Gomez
,
J. C.
,
Calvet
,
N.
,
Starace
,
A. K.
, and
Glatzmaier
,
G. C.
,
2013
, “
Ca(NO3)2–NaNO3–KNO3 Molten Salt Mixtures for Direct Thermal Energy Storage Systems in Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021016
.
41.
Sau
,
S.
,
Tripi
,
V.
,
Tizzoni
,
A. C.
,
Liberatore
,
R.
,
Mansi
,
E.
,
Spadoni
,
A.
,
Corsaro
,
N.
,
Capocelli
,
M.
,
Delise
,
T.
, and
Della Libera
,
A.
,
2021
, “
High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants
,”
Energies
,
14
(
17
), p.
5339
.
42.
Delise
,
T.
,
Sau
,
S.
,
Tizzoni
,
A. C.
,
Spadoni
,
A.
,
Corsaro
,
N.
,
Liberatore
,
R.
,
Morabito
,
T.
, and
Mansi
,
E.
,
2021
, “
Performance of an Indirect Packed Bed Reactor for Chemical Energy Storage
,”
Materials
,
14
(
18
), p.
5149
.
43.
Martinez
,
F. L.
,
Galindo Paniagua
,
F.
,
Pena Castro
,
M. D. P.
, and
Contreras Sanchez
,
L.
,
2016
, “
New Formulations of Nitrate Salts for Use as Fluid for the Storage and Transfer of Heat
,” Spanish Patent no201530038, p.
201530038
.
44.
COMSOL Multiphysics cyclopedia
,
Online weblink
, https://www.comsol.it/multiphysics/navier-stokes-equations.
45.
Bonk
,
A.
,
Sau
,
S.
,
Uranga
,
N.
,
Hernaiz
,
M.
, and
Bauer
,
T.
,
2018
, “
Advanced Heat Transfer Fluids for Direct Molten Salt Line-Focusing CSP Plants
,”
Prog. Energy Combust. Sci.
,
67
, pp.
69
87
.
46.
Siegel
,
N. P.
,
Bradshaw
,
R. W.
,
Cordaro
,
J. B.
, and
Kruizenga
,
A. M.
,
2011
, “
Thermophysical Property Measurement of Nitrate Salt Heat Transfer Fluids
,”
ASME 2011 5th International Conference on Energy Sustainability
,
Washington, DC
,
Aug. 7–10
.
47.
Sau
,
S.
,
Corsaro
,
N.
,
Crescenzi
,
T.
,
D’Ottavi
,
C.
,
Liberatore
,
R.
,
Licoccia
,
S.
,
Russo
,
V.
,
Tarquini
,
P.
, and
Tizzoni
,
A. C.
,
2016
, “
Techno-Economic Comparison Between CSP Plants Presenting Two Different Heat Transfer Fluids
,”
Appl. Energy
,
168
, pp.
96
109
.
48.
Bauer
,
T.
,
Breidenbach
,
N.
,
Pfleger
,
N.
,
Laing
,
D.
, and
Eck
,
M.
,
2012
, “
Overview of Molten Salt Storage Systems and Material Development for Solar Thermal Power Plants
,”
World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference
,
Denver, CO
,
May 13–17
.
49.
Bauer
,
T.
,
Pfleger
,
N.
,
Breidenbach
,
N.
,
Eck
,
M.
,
Laing
,
D.
, and
Kaesche
,
S.
,
2013
, “
Material Aspects of Solar Salt for Sensible Heat Storage
,”
Appl. Energy
,
111
, pp.
1114
1119
.
50.
White
,
L. R.
, and
Davis
,
H. T.
,
1967
, “
Thermal Conductivity of Molten Alkali Nitrates
,”
J. Chem. Phys.
,
47
(
12
), pp.
5433
5439
.
51.
Zhao
,
A. Z.
,
Wingert
,
M. C.
, and
Garay
,
J. E.
,
2021
, “
Frequency-Domain Hot-Wire Measurements of Molten Nitrate Salt Thermal Conductivity
,”
J. Chem. Eng. Data
,
66
(
1
), pp.
262
270
.
52.
Majid
,
M. A. A.
,
Muhammad
,
M.
,
Hampo
,
C. C.
, and
Akmar
,
A. B.
,
2020
, “
Analysis of a Thermal Energy Storage Tank in a Large District Cooling System: A Case Study
,”
Processes
,
8
(
9
), p.
1158
.
53.
Waluyo
,
J.
, and
Majid
,
M. A. A.
,
2010
, “
Temperature Profile and Thermocline Thickness Evaluation of a Stratified Thermal Energy Storage Tank
,”
Int. J. Mech. Mech. Eng.
,
10
(
1
), pp.
7
12
.
54.
Musser
,
A.
, and
Bahnfleth
,
W. P.
,
1999
, “
Field-Measured Performance of Four Full-Scale Cylindrical Stratified Chilled-Water Thermal Storage Tanks
,”
SHRAE Transactions
,
Seattle, WA
,
June 18–23
, Vol. 105.
55.
Han
,
Y.
,
Bai
,
N.
,
Wang
,
H.
,
Li
,
J.
, and
Zhang
,
J.
,
2021
, “
Thermal Performance of Naturally Stratified Water Storage Tank in a Power Plant: A Comparative Study
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
675
(
1
), p.
012062
.
56.
Motte
,
F.
,
Bugler-Lamb
,
S. L.
,
Falcoz
,
Q.
, and
Py
,
X.
,
2014
, “
Numerical Study of a Structured Thermocline Storage Tank Using Vitrified Waste as Filler Material
,”
Energy Procedia
,
49
, pp.
935
944
.
You do not currently have access to this content.