Abstract

Solar energy desalination process is the most efficient and cost-effective method for producing fresh water from saline water by employing solar energy from the sun's free source of heat. In the current study, experimental and theoretical methods were used to investigate the performance of a novel design of conical solar still integrated with conical glass cover and conical basin area with continuous volume flowrate at different values of volume flowrate, 80, 60, and 40 mL/s compared to traditional solar still. Experimental results showed that maximum productivity and efficiency can be achieved by utilizing the conical solar still at a lower volume flowrate of saline water. Highest efficiency can be obtained by utilizing traditional single solar still (TSS), conical solar still with a volume flowrate of 80 mL/s (CSSF), conical solar still with a volume flowrate of 60 mL/sec (CSSH), conical solar still with a volume flowrate of 40 mL/sec (CSQ), and conical solar still with volume flowrate of 40 mL/sec with an array of the mirror (CSQM) on average is 28.2, 42.04, 53.78, 63.4, and 69.15%, respectively. Freshwater productivity of CSQ was enhanced by employing the arrays of the mirror. Daily freshwater productivity of CSSF, CSSH, CSQ, and CSQM was enhanced on average by 221.5%, 160.4%, 157%, and 174.7%, respectively, over the freshwater productivity of TSS. Theoretical model is obtained utilizing mathcad software and is validated by comparing it with experimental findings. The theoretical results obtained from the mathematical model are in good agreement with the experimental results.

References

1.
Kazemi
,
H.
,
Fallah
,
K.
, and
Hosseini
,
M. J.
,
2017
, “
A Review of Solar Energy Driven HDH and Solar Still Desalination Technologies
,”
J. Sol. Energy Res.
,
2
(
3
), pp.
79
87
.
2.
Nayi
,
K. H.
, and
Modi
,
K. V.
,
2018
, “
Pyramid Solar Still: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
136
148
.
3.
Manchanda
,
H.
, and
Kumar
,
M.
,
2017
, “
Study of Water Desalination Techniques and a Review on Active Solar Distillation Methods
,”
Environ. Prog. Sustain. Energy
,
37
(
1
), pp.
444
464
.
4.
Gude
,
V. G.
,
Nirmalakhandan
,
N.
, and
Deng
,
S.
,
2011
, “
Desalination Using Solar Energy: Towards Sustainability
,”
Energy
,
36
(
1
), pp.
78
85
.
5.
Hanson
,
A.
,
Zachritz
,
W.
,
Stevens
,
K.
,
Mimbela
,
L.
,
Polka
,
R.
, and
Cisneros
,
L.
,
2004
, “
Distillate Water Quality of a Single-Basin Solar Still: Laboratory and Field Studies
,”
Sol. Energy
,
76
(
5
), pp.
635
645
.
6.
Al-Hayeka
,
I.
, and
Badran
,
O. O.
,
2004
, “
The Effect of Using Different Designs of Solar Stills on Water Distillation
,”
Desalination
,
169
(
2
), pp.
121
127
.
7.
Badran
,
O. O.
,
2007
, “
Experimental Study of the Enhancement Parameters on a Single Slope Solar Still Productivity
,”
Desalination
,
209
(
1–3
), pp.
136
143
.
8.
Velmurugan
,
V.
, and
Srithar
,
K.
,
2011
, “
Performance Analysis of Solar Stills Based on Various Factors Affecting the Productivity—A Review
,”
Renew. Sustain. Energy Rev.
,
15
(
2
), pp.
1294
1304
.
9.
Rahbar
,
N.
, and
Esfahani
,
J. A.
,
2012
, “
Experimental Study of a Novel Portable Solar Still by Utilizing the Heatpipe and Thermoelectric Module
,”
Desalination
,
284
, pp.
55
61
.
10.
El-Sebaii
,
A. A.
,
2011
, “
On Effect of Wind Speed on Passive Solar Still Performance Based on Inner/Outer Surface Temperatures of the Glass Cover
,”
Energy
,
36
(
8
), pp.
4943
4949
.
11.
Hamed
,
O. A.
,
Kosaka
,
H.
,
Bamardouf
,
K. H.
,
Al-Shail
,
K.
, and
Al-Ghamdi
,
A. S.
,
2016
, “
Concentrating Solar Power for Seawater Thermal Desalination
,”
Desalination
,
396
, pp.
70
78
.
12.
Aldarabseh
,
S. M.
, and
Abdallah
,
S.
,
2022
, “
Stepped Semispherical Solar Still With PV Powered Electrical Heaters and an Automated Single-Axis Sun Tracker System
,”
J. Enhanc. Heat Transf.
,
29
(
8
), pp.
37
59
.
13.
Aldarabseh
,
S. M.
, and
Abdallah
,
S.
,
2022
, “
Experimental and Numerical Investigation of a Semispherical Solar Still, Chamber Stepwise Basin, With and Without a Photovoltaic-Powered Electrical Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031006
.
14.
Manokar
,
A. M.
,
Winston
,
D. P.
,
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
, and
Arunkumar
,
T.
,
2018
, “
Different Parameter and Technique Affecting the Rate of Evaporation on Active Solar Still—A Review
,”
Heat Mass Transf.
,
54
(
3
), pp.
593
630
.
15.
Abd Elbar
,
A. R.
, and
Hassan
,
H.
,
2020
, “
Enhancement of Hybrid Solar Desalination System Composed of Solar Panel and Solar Still by Using Porous Material and Saline Water Preheating
,”
Sol. Energy
,
204
, pp.
382
394
.
16.
Bani-Hani
,
E.
,
Qassem
,
H.
,
Al Kandari
,
M.
,
Al Azmi
,
S.
,
Khalid
,
M.
,
Bu-Mijdad
,
H.
,
Khanafer
,
K.
, and
Sedaghat
,
A.
,
2017
, “
Experimental Analysis of an Improved Solar Still System With Cooling Fan and Preheating Oil
,”
Energy Eng.
,
114
(
5
), pp.
55
71
.
17.
Narayanan
,
S. S.
,
Yadav
,
A.
, and
Khaled
,
M. N.
,
2020
, “
A Concise Review on Performance Improvement of Solar Stills
,”
SN Appl. Sci.
,
2
(
3
), p. 511.
18.
El-samadony
,
Y. A. F.
,
El-maghlany
,
W. M.
, and
Kabeel
,
A. E.
,
2016
, “
Influence of Glass Cover Inclination Angle on Radiation Heat Transfer Rate Within Stepped Solar Still
,”
Desalination
,
384
, pp.
68
77
.
19.
Khalifa
,
A. J. N.
,
2011
, “
On the Effect of Cover Tilt Angle of the Simple Solar Still on Its Productivity in Different Seasons and Latitudes
,”
Energy Convers. Manag.
,
52
(
1
), pp.
431
436
.
20.
Panchal
,
H. N.
, and
Shah
,
P. K.
,
2012
, “
Effect of Varying Glass Cover Thickness on Performance of Solar Still In a Winter Climate Conditions
,”
Int. J. Renew. Energy Res.
,
1
(
4
), pp.
212
223
.
21.
Dimri
,
V.
,
Sarkar
,
B.
,
Singh
,
U.
, and
Tiwari
,
G. N.
,
2008
, “
Effect of Condensing Cover Material on Yield of an Active Solar Still: An Experimental Validation
,”
Desalination
,
227
(
1–3
), pp.
178
189
.
22.
Tiwari
,
G. N.
,
Mishra
,
A. K.
,
Ahmad
,
A.
, and
Khan
,
M. E.
,
2020
, “
Effect of Shape of Condensing Cover on Energy and Exergy Analysis of a PVT-CPC Active Solar Distillation System
,”
Sol. Energy
,
205
, pp.
113
125
.
23.
Tiwari
,
A. K.
, and
Tiwari
,
G. N.
,
2006
, “
Effect of Water Depths on Heat and Mass Transfer in a Passive Solar Still: in Summer Climatic Condition
,”
Desalination
,
195
(
1–3
), pp.
78
94
.
24.
El-sebaey
,
M. S.
,
Ellman
,
A.
,
Hegazy
,
A.
, and
Panchal
,
H.
,
2022
, “
Experimental Study and Mathematical Model Development for the Effect of Water Depth on Water Production of a Modified Basin Solar Still
,”
Case Stud. Therm. Eng.
,
33
, p.
101925
.
25.
Sivakumar
,
V.
, and
Sundaram
,
E. G.
,
2013
, “
Improvement Techniques of Solar Still Efficiency: A Review
,”
Renew. Sustain. Energy Rev.
,
28
, pp.
246
264
.
26.
Al-Hinai
,
H.
,
Al-Nassri
,
M. S.
, and
Jubran
,
B. A.
,
2002
, “
Effect of Climatic, Design and Operational Parameters on the Yield of a Simple Solar Still
,”
Energy Convers. Manag.
,
43
(
13
), pp.
1639
1650
.
27.
Badran
,
O. O.
, and
Al-Tahaineh
,
H. A.
,
2005
, “
The Effect of Coupling a Flat-Plate Collector on the Solar Still Productivity
,”
Desalination
,
183
(
1
), pp.
137
142
.
28.
Joseph
,
J.
,
Saravanan
,
R.
, and
Renganarayanan
,
S.
,
2005
, “
Studies on a Single-Stage Solar Desalination System for Domestic Applications
,”
Desalination
,
173
(
1
), pp.
77
82
.
29.
Sathyamurthy
,
R.
,
El-Agouz
,
S. A.
, and
Dharmaraj
,
V.
,
2015
, “
Experimental Analysis of a Portable Solar Still With Evaporation and Condensation Chambers
,”
Desalination
,
367
, pp.
180
185
.
30.
Kabeel
,
A. E.
,
Omara
,
Z. M.
, and
Younes
,
M. M.
,
2015
, “
Techniques Used to Improve the Performance of the Stepped Solar Still—A Review
,”
Renew. Sustain. Energy Rev.
,
46
(
6
), pp.
178
188
.
31.
Sathyamurthy
,
R.
,
Samuel
,
D. G. H.
,
Nagarajan
,
P. K.
, and
Arunkumar
,
T.
,
2016
, “
Geometrical Variations in Solar Stills for Improving the Fresh Water Yield—A Review
,”
Desalin. Water Treat.
,
57
(
45
), pp.
21145
21159
.
32.
Abdallah
,
S.
,
Badran
,
O.
, and
Abu-Khader
,
M. M.
,
2008
, “
Performance Evaluation of a Modified Design of a Single Slope Solar Still
,”
Desalination
,
219
(
1
), pp.
222
230
.
33.
Moreno
,
S.
,
Hinojosa
,
J. F.
,
Maytorena
,
V. M.
,
Navarro
,
J. M. A.
, and
Vazquez-Ruiz
,
A.
,
2023
, “
Thermal Performance and Water Production in a Solar Still With an Energy Storage Material Under Different Concentrations of Salt
,”
ASME. J. Sol. Energy Eng.
,
145
(
3
), p.
031011
.
34.
Singh
,
J.
,
Mittal
,
M. K.
, and
Khullar
,
V.
,
2022
, “
Experimental Study of Single-Slope Solar Still Coupled With Nanofluid-Based Volumetric Absorption Solar Collector
,”
ASME. J. Sol. Energy Eng.
,
144
(
1
), p.
011011
.
35.
Modi
,
K. V.
,
Shukla
,
D. L.
, and
Ankoliya
,
D. B.
,
2019
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME. J. Sol. Energy Eng.
,
141
(
3
), p.
031008
.
36.
Khallaf
,
A. M.
,
El-Sebaii
,
A. A.
, and
Hegazy
,
M. M.
,
2021
, “
Investigation of Thermal Performance of Single Basin Solar Still With Soft Drink Cans Filled With Sand as a Storage Medium
,”
ASME. J. Sol. Energy Eng.
,
143
(
6
), p.
061011
.
37.
Rastegar
,
S.
,
Kargarsharifabad
,
H.
,
Rahbar
,
N.
, and
Behshad
,
M.
,
2020
, “
Distilled Water Production with Combination of Solar Still and Thermosyphon Heat Pipe Heat Exchanger Coupled With Indirect Water Bath Heater—Experimental Study and Thermoeconomic Analysis
,”
Appl. Therm. Eng.
,
176
, p.
115437
.
38.
Abdullah
,
A. S.
,
Younes
,
M. M.
,
Omara
,
Z. M.
, and
Essa
,
F. A.
,
2020
, “
New Design of Trays Solar Still With Enhanced Evaporation Methods—Comprehensive Study
,”
Sol. Energy
,
203
, pp.
164
174
.
39.
Kabeel
,
A. E.
,
Harby
,
K.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2021
, “
Performance Improvement of a Tubular Solar Still Using V-Corrugated Absorber With Wick Materials: Numerical and Experimental Investigations
,”
Sol. Energy
,
217
, pp.
187
199
.
40.
Kabeel
,
A. E.
,
Sharshir
,
S. W.
,
Abdelaziz
,
G. B.
,
Halim
,
M. A.
, and
Swidan
,
A.
,
2019
, “
Improving Performance of Tubular Solar Still by Controlling the Water Depth and Cover Cooling
,”
J. Clean. Prod.
,
233
, pp.
848
856
.
41.
Al-Nimr
,
M. A.
, and
Dahdolan
,
M. E.
,
2015
, “
Modeling of a Novel Concentrated Solar Still Enhanced with a Porous Evaporator and an Internal Condenser
,”
Sol. Energy
,
114
, pp.
8
16
.
42.
Essa
,
F. A.
,
Abdullah
,
A. S.
, and
Omara
,
Z. M.
,
2021
, “
Improving the Performance of Tubular Solar Still Using Rotating Drum—Experimental and Theoretical Investigation
,”
Process Saf. Environ. Prot.
,
148
, pp.
579
589
.
43.
Alhadri
,
M.
,
Alatawi
,
I.
,
Alshammari
,
G. B.
,
Haleem
,
F.
,
Heniegal
,
M. A.
,
Abdelaziz
,
A. M. A.
,
Ahmed
,
U. F.
,
Alqsair
,
M. M. Z.
,
Kabeel
,
M.
, and
Elashmawy
,
A. E.
,
2022
, “
Design of a Low-Cost Parabolic Concentrator Solar Tracking System: Tubular Solar Still Application
,”
ASME. J. Sol. Energy Eng.
,
144
(
5
), p.
051006
.
44.
Elgendi
,
M.
,
Selim
,
M. Y. E.
,
Aldhaheri
,
A.
,
Alshehhi
,
W.
,
Almarshoodi
,
H.
, and
Alhefeiti
,
A.
,
2022
, “
Design Procedures for a Passive Pyramid Solar Still With an Automatic Feed Water System
,”
Alexandria Eng. J.
,
61
(
8
), pp.
6419
6431
.
45.
Fatha
,
H. E. S.
,
El-Samanoudy
,
M.
,
Fahmy
,
K.
, and
Hassabou
,
A.
,
2003
, “
Thermal-Economic Analysis and Comparison Between Pyramid-Shaped and Single-Slope Solar Still Configurations
,”
Desalination
,
159
(
1
), pp.
69
79
.
46.
Kabeel
,
A. E.
, and
Abdelgaied
,
M.
,
2019
, “
Enhancement of Pyramid-Shaped Solar Stills Performance Using a High Thermal Conductivity Absorber Plate and Cooling the Glass Cover
,”
Renew. Energy
,
146
, pp.
769
775
.
47.
Nadal-Bach
,
J.
,
Bruno
,
J. C.
,
Farnós
,
J.
, and
Rovira
,
M.
,
2021
, “
Solar Stills and Evaporators for the Treatment of Agro-Industrial Liquid Wastes: A Review
,”
Renew. Sustain. Energy Rev.
,
142
, p.
110825
.
48.
Pounraj
,
P.
,
Winston
,
D. P.
,
Kabeel
,
A. E.
,
Kumar
,
B. P.
,
Manokar
,
A. M.
,
Sathyamurthy
,
R.
, and
Christabel
,
S. C.
,
2018
, “
Experimental Investigation on Peltier Based Hybrid PV/T Active Solar Still for Enhancing the Overall Performance
,”
Energy Convers. Manag.
,
168
, pp.
371
381
.
49.
Arunkumar
,
T.
,
Jayaprakash
,
R.
,
Denkenberger
,
D.
,
Amimul
,
A.
,
Okundamiya
,
M. S.
,
Hiroshi
,
T.
, and
Aybar
,
H. S.
,
2012
, “
An Experimental Study on a Hemispherical Solar Still
,”
Desalination
,
286
, pp.
342
348
.
50.
Ismail
,
B. I.
,
2009
, “
Design and Performance of a Transportable Hemispherical Solar Still
,”
Renew. Energy
,
34
(
1
), pp.
145
150
.
51.
Samuel
,
D. G. H.
,
Nagarajan
,
P. K.
,
Arunkumar
,
T.
,
Kannan
,
E.
, and
Sathyamurthy
,
R.
,
2016
, “
Enhancing the Solar Still Yield by Increasing the Surface Area of Water—A Review
,”
Environ. Prog. Sustain. Energy
,
35
(
3
), pp.
815
822
.
52.
Velmurugan
,
V.
,
Kumaran
,
S. S.
,
Prabhu
,
V. N.
, and
Srithar
,
K.
,
2008
, “
Productivity Enhancement of Stepped Solar Still—Performance Analysis
,”
Therm. Sci.
,
12
(
3
), pp.
153
163
.
53.
Velmurugan
,
V.
,
Kumar
,
K. J. N.
,
Haq
,
T. N.
, and
Srithar
,
K.
,
2009
, “
Performance Analysis in Stepped Solar Still for Effluent Desalination
,”
Energy
,
34
(
9
), pp.
1179
1186
.
54.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Omara
,
Z. M.
, and
Younes
,
M. M.
,
2012
, “
Theoretical and Experimental Parametric Study of Modified Stepped Solar Still
,”
Desalination
,
289
, pp.
12
20
.
55.
Alaudeen
,
A.
,
Johnson
,
K.
,
Ganasundar
,
P.
,
Abuthahir
,
A. S.
, and
Srithar
,
K.
,
2014
, “
Study on Stepped Type Basin in a Solar Still
,”
J. King Saud Univ.—Eng. Sci.
,
26
(
2
), pp.
176
183
.
56.
Taamneh
,
Y.
, and
Taamneh
,
M. M.
,
2012
, “
Performance of Pyramid-Shaped Solar Still: Experimental Study
,”
Desalination
,
291
, pp.
65
68
.
57.
Manokar
,
A. M.
,
Taamneh
,
Y.
,
Kabeel
,
A. E.
,
Winston
,
D. P.
,
Vijayabalan
,
P.
,
Balaji
,
D.
,
Sathyamurthy
,
R.
,
Sundar
,
S. P.
, and
Mageshbabu
,
D.
,
2020
, “
Effect of Water Depth and Insulation on the Productivity of an Acrylic Pyramid Solar Still—An Experimental Study
,”
Groundw. Sustain. Dev.
,
10
, p.
100319
.
58.
Al-hassan
,
G. A.
, and
Algarni
,
S. A.
,
2013
, “
Exploring of Water Distillation by Single Solar Still Basins
,”
Am. J. Clim. Chang.
,
2
(
1
), pp.
57
61
.
59.
Modi
,
K. V.
, and
Nayi
,
K. H.
,
2020
, “
Efficacy of Forced Condensation and Forced Evaporation with Thermal Energy Storage Material on Square Pyramid Solar Still
,”
Renew. Energy
,
153
, pp.
1307
1319
.
60.
Kabeel
,
A. E.
,
Harby
,
K.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2020
, “
Performance of the Modified Tubular Solar Still Integrated With Cylindrical Parabolic Concentrators
,”
Sol. Energy
,
204
, pp.
181
189
.
61.
Panchal
,
H.
,
Kumar
,
K.
,
Israr
,
M.
, and
Thakar
,
N.
,
2019
, “
Various Techniques to Enhance Distillate Output of Tubular Solar Still: A Review
,”
Groundw. Sustain. Dev.
,
9
, p.
100268
.
62.
Minasian
,
A. N.
, and
Al-Karaghouli
,
A. A.
,
1992
, “
Floating Vertical Solar Still for Desalination of Marsh Water
,”
Renew. Energy
,
2
(
6
), pp.
631
635
.
63.
Gad
,
H. E.
,
El-din
,
S. S.
,
Hussien
,
A. A.
, and
Ramzy
,
K.
,
2015
, “
Thermal Analysis of a Conical Solar Still Performance: An Experimental Study
,”
Sol. Energy
,
122
, pp.
900
909
.
64.
Baharin
,
Z. A. K.
,
Asmi
,
M. F.
, and
Masdek
,
N. R. N.
,
2020
, “
Effect of Cone Shape Condenser Plate Tilt Angle on Solar Still Productivity
,”
Proceedings of the 2nd International Conference on Green Environmental Engineering and Technology, Seoul, South Korea, July 23–24, 2020
, vol. 616, p.
012038
.
65.
Mishra
,
A.
,
Meraj
,
M.
,
Tiwari
,
G. N.
, and
Ahmad
,
A.
,
2021
, “
Effect of Inclination on Internal Heat and Mass Transfer of Active Solar Still Having Conical Condensing Cover
,”
Mater. Today Proc.
,
38
(
1
), pp.
105
111
.
66.
Jonhson
,
W.
,
Xu
,
X.
,
Zhang
,
D.
,
Chua
,
W. T.
,
Tan
,
Y. H.
,
Liu
,
X.
,
Guan
,
C.
, et al
,
2021
, “
Fabrication of 3D-Printed Ceramic Structures for Portable Solar Desalination Devices
,”
ACS Appl. Mater. Interfaces
,
13
(
19
), pp.
23220
23229
.
67.
Taghvaei
,
H.
,
Taghvaei
,
H.
,
Jafarpur
,
K.
,
Estahbanati
,
M. R. K.
,
Feilizadeh
,
M.
,
Feilizadeh
,
M.
, and
Ardekani
,
A. S.
,
2014
, “
A Thorough Investigation of the Effects of Water Depth on the Performance of Active Solar Stills
,”
Desalination
,
347
, pp.
77
85
.
68.
Tiwari
,
G. N.
,
Sumegha
,
C.
, and
Yadav
,
Y. P.
,
1991
, “
Effect of Water Depth on the Transient Performance of a Double Basin Solar Still
,”
Energy Convers. Manag.
,
32
(
3
), pp.
293
301
.
69.
Aybar
,
,
2006
, “
Mathematical Modeling of an Inclined Solar Water Distillation System
,”
Desalination
,
190
(
1–3
), pp.
63
70
.
70.
Srithar
,
K.
, and
Mani
,
A.
,
2004
, “
Analysis of a Single Cover FRP Flat Plate Collector for Treating Tannery Effluent
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
873
883
.
71.
Fernández
,
J.
, and
Chargoy
,
N.
,
1990
, “
Multi-Stage, Indirectly Heated Solar Still
,”
Sol. Energy
,
44
(
4
), pp.
215
223
.
72.
Badran
,
O. O.
, and
Abu-Khader
,
M. M.
,
2007
, “
Evaluating Thermal Performance of a Single Slope Solar Still
,”
Heat Mass Transf.
,
43
(
10
), pp.
985
995
.
73.
Mousavi
,
S. M. T.
,
Egelioglu
,
F.
, and
Ilkan
,
M.
,
2020
, “
Experimental and Numerical Study of the Effect of Various Design Configurations on the Thermal Performance of Solar Still Desalination
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
, pp.
1
15
.
74.
Singh
,
D. B.
,
Yadav
,
J. K.
,
Dwivedi
,
V. K.
,
Kumar
,
S.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Experimental Studies of Active Solar Still Integrated With Two Hybrid PVT Collectors
,”
Sol. Energy
,
130
, pp.
207
223
.
75.
Zurigat
,
Y. H.
, and
Abu-arabi
,
M. K.
,
2004
, “
Modelling and Performance Analysis of a Regenerative Solar Desalination Unit
,”
Appl. Therm. Eng.
,
24
(
7
), pp.
1061
1072
.
76.
Smith
,
C. C.
,
Jones
,
R. W.
, and
Lof
,
G. O. G.
,
1993
, “
Energy Requirements and Potential Savings for Heated Indoor Swimming Pools
,”
ASHRAE Trans.
,
99
(
2
), pp.
864
874
.
77.
El-Agouz
,
S. A.
,
El-Samadony
,
Y. A. F.
, and
Kabeel
,
A. E.
,
2015
, “
Performance Evaluation of a Continuous Flow Inclined Solar Still Desalination System
,”
Energy Convers. Manag.
,
101
, pp.
606
615
.
78.
Shukla
,
S. K.
, and
Sorayan
,
V. P. S.
,
2005
, “
Thermal Modeling of Solar Stills: An Experimental Validation
,”
Renew. engergy
,
30
(
5
), pp.
683
699
.
79.
Srithar
,
K.
, and
Mani
,
A.
,
2003
, “
Comparison Between Simulated and Experimental Performance of an Open Solar Flat Plate Collector for Treating Tannery Effluent
,”
Int. Commun. Heat Mass Transfer
,
30
(
4
), pp.
505
514
.
80.
Srithar
,
K.
, and
Mani
,
A.
,
2006
, “
Studies on Solar Flat Plate Collector Evaporation Systems for Tannery Effluent (Soak Liquor)
,”
J. Zhejiang Univ. Sci.
,
7
(
11
), pp.
1870
1877
.
81.
Aldarabseh
,
S. M.
,
2020
, “
Evaporation Rate From Free Water Surface
,”
Ph. D. dissertation, 3628
,
Western Michigan University
,
Kalamazoo, MI
.
82.
Aldarabseh
,
S. M.
, and
Merati
,
P.
,
2022
, “
An Experimental Investigation of the Potential of Empirical Correlations Derived Based on Dalton’s Law and Similarity Theory to Predict Evaporation Rate From Still Water Surface
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
,
236
(
12
), pp.
6554
6578
.
83.
Tiwari
,
G. N.
,
Dimri
,
V.
,
Singh
,
U.
,
Chel
,
A.
, and
Sarkar
,
B.
,
2007
, “
Comparative Thermal Performance Evaluation of an Active Solar Distillation System
,”
Int. J. Energy Res.
,
31
(
15
), pp.
1465
1482
.
84.
Abd Elkader
,
M.
,
Safwat
,
N. A.
,
Abd Elmotalip
,
A.
, and
Mabrouk
,
A. A.
,
1999
, “
Experimental Evaluation of Solar Still Mathematical Models
,”
Proceedings of the Fourth International Water Technology Conference IWTC
,
Alexandria, Egypt
,
March 5–8
, pp.
197
205
.
You do not currently have access to this content.