Abstract

This study focuses on improving the thermal performance of a solar air heater (SAH) using a single-pass spiral-shaped ducts. The SAH is designed and tested under prevailing weather conditions of Gabes, Tunisia (33°52.8876′ N,10°5.892′ E). The experimental measurements are carried out over 4 days. Similarly, a computational fluid dynamics (CFD) model was developed to study the fluid flow and the heat transfer inside the SAH using the commercial software ansys fluent 2021 R1”. The discrete ordinate (DO) radiation model and the k-ω shear stress transport (SST) turbulence model are used to study the radiative heat transfer and the turbulent flow in the SAH, respectively. The numerical model is validated against experimental data, and the average error does not exceed 3.6%. To improve the heat transfer phenomena, the ratio of horizontal baffle spacing “d” to vertical baffle spacing “p” (d/p) is numerically investigated. Moreover, the highest air outlet temperature during the test days reached 81.1 °C under a mass flowrate of 0.0077 kg/s. The maximum efficiencies are 57%, 54%, 49%, and 46% for the configurations d/p = 1.5, d/p = 2, d/p = 1, and d/p = 0.5 under a mass flowrate of 0.02 kg/s, respectively. The SAH design with d/p = 1.5 is about 4–10% more efficient than the standard design with d/p = 1 under a mass flowrate ranging from 0.0077 kg/s to 0.025 kg/s.

References

1.
Ceylan
,
İ.
,
Gürel
,
A. E.
,
Ergün
,
A.
,
Guma Ali
,
İH
,
Ağbulut
,
Ü
, and
Yıldız
,
G.
,
2021
, “
A Detailed Analysis of CPV/T Solar Air Heater System With Thermal Energy Storage: A Novel Winter Season Application
,”
J. Build. Eng.
,
42
, p.
103097
.
2.
Ghiami
,
A.
, and
Ghiami
,
S.
,
2018
, “
Comparative Study Based on Energy and Exergy Analyses of a Baffled Solar Air Heater With Latent Storage Collector
,”
Appl. Therm. Eng.
,
133
, pp.
797
808
.
3.
Abuşka
,
M.
,
2018
, “
Energy and Exergy Analysis of Solar Air Heater Having New Design Absorber Plate With Conical Surface
,”
Appl. Therm. Eng.
,
131
, pp.
115
124
.
4.
Delihasanlar
,
E.
,
Yaylacı
,
E. K.
, and
Adem
,
D.
,
2019
, “
Solar Energy Potential in the World and Turkey, Current Status, Incentives, Installation Cost Analysis-Karabuk Province Sample
,”
Electron. Lett. Sci. Eng.
,
15
(
1
), pp.
12
20
.
5.
Ceylan
,
I.
, and
Gürel
,
A. E.
,
2016
, “
Solar-Assisted Fluidized Bed Dryer Integrated With a Heat Pump for Mint Leaves
,”
Appl. Therm. Eng.
,
106
, pp.
899
905
.
6.
Kabeel
,
A. E.
,
Hamed
,
M. H.
,
Omara
,
Z. M.
, and
Kandeal
,
A. W.
,
2017
, “
Solar Air Heaters: Design Configurations, Improvement Methods and Applications—A Detailed Review
,”
Renew. Sust. Energy Rev.
,
70
, pp.
1189
1206
.
7.
Ammar
,
M.
,
Mokni
,
A.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2021
, “
Performance Optimization of Flat Plate Solar Collector Through the Integration of Different Slats Arrangements Made of Transparent Insulation Material
,”
Sustain. Energy Technol. Assess.
,
46
, p.
101237
.
8.
Vijayan
,
S.
,
Arjunan
,
T. V.
,
Kumar
,
A.
, and
Matheswaran
,
M. M.
,
2020
, “
Experimental and Thermal Performance Investigations on Sensible Storage Based Solar Air Heater
,”
J. Energy Storage
,
31
, p.
101620
.
9.
El-Sebaii
,
A. A.
,
Aboul-Enein
,
S.
,
Ramadan
,
M. R. I.
,
Shalaby
,
S. M.
, and
Moharram
,
B. M.
,
2011
, “
Investigation of Thermal Performance of-Double Pass-Flat and V-Corrugated Plate Solar Air Heaters
,”
Energy
,
36
(
2
), pp.
1076
1086
.
10.
Kesavan
,
S.
,
Arjunan
,
T. V.
, and
Vijayan
,
S.
,
2019
, “
Thermodynamic Analysis of a Triple-Pass Solar Dryer for Drying Potato Slices
,”
J. Therm. Anal. Calorim.
,
136
(
1
), pp.
159
171
.
11.
Velmurugan
,
P.
, and
Kalaivanan
,
R.
,
2015
, “
Energy and Exergy Analysis of Multi-Pass Flat Plate Solar Air Heater—An Analytical Approach
,”
Int. J. Green Energy
,
12
(
8
), pp.
810
820
.
12.
Amara
,
W.
,
Aryanfar
,
Y.
,
Koten
,
H.
,
Bouabidi
,
A.
,
Chrigui
,
M.
, and
Alcaraz
,
J.
,
2023
, “
CFD Analysis of the Effect of Internal Peak Angle and Mass Flow Rates on the Thermal Performance of Solar Air Heater With Triangle Cross-Section
,”
Therm. Sci.
, pp.
46
46
.
13.
Yeh
,
H. M.
, and
Ho
,
C. D.
,
2009
, “
Effect of External Recycle on the Performances of Flat-Plate Solar Air Heaters With Internal Fins Attached
,”
Renew. Energy
,
34
(
5
), pp.
1340
1347
.
14.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2016
, “
Investigation of the Thermal Performances of Flat, Finned, and V-Corrugated Plate Solar Air Heaters
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051004
.
15.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Exergoeconomic Analysis of Recyclic Packed Bed Solar Air Heater-Sustained Air Heating System for Buildings
,”
J. Energy Storage
,
5
, pp.
33
47
.
16.
Abuşka
,
M.
,
Şevik
,
S.
, and
Kayapunar
,
A.
,
2019
, “
A Comparative Investigation of the Effect of Honeycomb Core on the Latent Heat Storage With PCM in Solar Air Heater
,”
Appl. Therm. Eng.
,
148
, pp.
684
693
.
17.
Abuşka
,
M.
,
Şevik
,
S.
, and
Kayapunar
,
A.
,
2019
, “
Comparative Energy and Exergy Performance Investigation of Forced Convection Solar Air Collectors With Cherry Stone/Powder
,”
Renew. Energy
,
143
, pp.
34
46
.
18.
Yagnesh Sharma
,
N.
,
Madhwesh
,
N.
, and
Vasudeva Karanth
,
K.
,
2019
, “
The Effect of Flow Obstacles of Different Shapes for Generating Turbulent Flow for Improved Performance of the Solar Air Heater
,”
Proc. Manuf.
,
35
, pp.
1096
1101
.
19.
Bensaci
,
C. E.
,
Moummi
,
A.
,
Sanchez de la Flor
,
F. J.
,
Rodriguez Jara
,
E. A.
,
Rincon-Casado
,
A.
, and
Ruiz-Pardo
,
A.
,
2020
, “
Numerical and Experimental Study of the Heat Transfer and Hydraulic Performance of Solar Air Heaters With Different Baffle Positions
,”
Renew. Energy
,
155
, pp.
1231
1244
.
20.
Wang
,
D.
,
Liu
,
J.
,
Liu
,
Y.
,
Wang
,
Y.
,
Li
,
B.
, and
Liu
,
J.
,
2020
, “
Evaluation of the Performance of an Improved Solar Air Heater With ‘S’ Shaped Ribs With Gap
,”
Sol. Energy
,
195
(
13
), pp.
89
101
.
21.
Arunkumar
,
H. S.
,
Vasudeva Karanth
,
K.
, and
Kumar
,
S.
,
2020
, “
Review on the Design Modifications of a Solar Air Heater for Improvement in the Thermal Performance
,”
Sustain. Energy Technol. Assess.
,
39
, p.
100685
.
22.
Sethi
,
M.
, and
Thakur
,
N. S.
,
2012
, “
Correlations for Solar Air Heater Duct With Dimpled Shape Roughness Elements on Absorber Plate
,”
Sol. Energy
,
86
(
9
), pp.
2852
2861
.
23.
Ramesh
,
C.
,
Vijayakumar
,
M.
,
Jeyanthi
,
L.
,
Rupesh
,
P. L.
,
Kanchana
,
A.
,
Jyothi Sankar
,
P. R.
,
Sajith
,
V. S.
,
Munjal
,
N.
, and
Birhanu
,
H. A.
,
2022
, “
Mathematical Model for Energy and Exergy-Based Simulation of Triangular Solar Energy Extractor for Air Heating Applications
,”
Math. Probl. Eng.
,
2022
, pp.
1
14
.
24.
Ghritlahre
,
H. K.
,
Sahu
,
P. K.
, and
Chand
,
S.
,
2020
, “
Thermal Performance and Heat Transfer Analysis of Arc Shaped Roughened Solar Air Heater—An Experimental Study
,”
Sol. Energy
,
199
, pp.
173
182
.
25.
Alam
,
T.
, and
Kim
,
M. H.
,
2016
, “
Numerical Study on Thermal Hydraulic Performance Improvement in Solar Air Heater Duct With Semi Ellipse Shaped Obstacles
,”
Energy
,
112
, pp.
588
598
.
26.
Nowzari
,
R.
,
Saygin
,
H.
, and
Aldabbagh
,
L. B. Y.
,
2021
, “
Evaluating the Performance of a Modified Solar Air Heater With Pierced Cover and Packed Mesh Layers
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011006
.
27.
Cuzminschi
,
M.
,
Gherasim
,
R.
,
Girleanu
,
V.
,
Zubarev
,
A.
, and
Stamatin
,
I.
,
2018
, “
Innovative Thermo-Solar Air Heater
,”
Energy Build.
,
158
, pp.
964
970
.
28.
Hu
,
J.
,
Guo
,
M.
,
Guo
,
J.
,
Zhang
,
G.
, and
Zhang
,
Y.
,
2020
, “
Numerical and Experimental Investigation of Solar Air Collector With Internal Swirling Flow
,”
Renew. Energy
,
162
, pp.
2259
2271
.
29.
Lertnuwat
,
B.
,
2022
, “
The Effect of the Hole Position on Trapezoidal Winglet Vortex Generators in a Rectangular-Duct-Type Solar Air Heater
,”
J. Mech. Sci. Technol.
,
36
(
12
), pp.
6345
6354
.
30.
Tuncer
,
A. D.
,
Khanlari
,
A.
,
Sözen
,
A.
,
Gürbüz
,
E. Y.
,
Şirin
,
C.
, and
Gungor
,
A.
,
2020
, “
Energy-Exergy and Enviro-Economic Survey of Solar Air Heaters With Various Air Channel Modifications
,”
Renew. Energy
,
160
, pp.
67
85
.
31.
Jia
,
B.
,
Yang
,
L.
,
Zhang
,
L.
,
Liu
,
B.
,
Liu
,
F.
, and
Li
,
X.
,
2021
, “
Optimizing Structure of Baffles on Thermal Performance of Spiral Solar Air Heaters
,”
Sol. Energy
,
224
, pp.
757
764
.
32.
Verma
,
S. K.
,
Sharma
,
K.
,
Gupta
,
N. K.
,
Soni
,
P.
, and
Upadhyay
,
N.
,
2020
, “
Performance Comparison of Innovative Spiral Shaped Solar Collector Design With Conventional Flat Plate Solar Collector
,”
Energy
,
194
, p.
116853
.
33.
Esen
,
H.
,
2008
, “
Experimental Energy and Exergy Analysis of a Double-Flow Solar Air Heater Having Different Obstacles on Absorber Plates
,”
Build. Environ.
,
43
(
6
), pp.
1046
1054
.
34.
Raam Dheep
,
G.
, and
Sreekumar
,
A.
,
2020
, “
Experimental Studies on Energy and Exergy Analysis of a Single-Pass Parallel Flow Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011003
.
35.
Singh
,
S.
,
Dhruw
,
L.
, and
Chander
,
S.
,
2019
, “
Experimental Investigation of a Double Pass Converging Finned Wire Mesh Packed Bed Solar Air Heater
,”
J. Energy Storage
,
21
, pp.
713
723
.
36.
Singh
,
S.
,
2020
, “
Experimental and Numerical Investigations of a Single and Double Pass Porous Serpentine Wavy Wiremesh Packed Bed Solar Air Heater
,”
Renew. Energy
,
145
, pp.
1361
1387
.
37.
Zhou
,
L.
,
Liu
,
J.
,
Huang
,
Q.
, and
Wang
,
Y.
,
2019
, “
Analysis of Combined Natural Convection and Radiation Heat Transfer in a Partitioned Rectangular Enclosure With Semitransparent Walls
,”
Trans. Tianjin Univ.
,
25
(
5
), pp.
472
487
.
38.
Sun
,
Y.
,
Wen
,
G.
,
Xiao
,
X.
,
Ren
,
B.
,
Yang
,
N.
, and
Zhang
,
L.
,
2018
, “
Numerical Study on Heat Transfer and Flow Characteristics for Laminar Flow in a Circular Tube With Swirl Generators
,”
Trans. Tianjin Univ.
,
24
(
3
), pp.
244
255
.
39.
Rahmani
,
E.
,
Moradi
,
T.
,
Fattahi
,
A.
,
Delpisheh
,
M.
,
Karimi
,
N.
,
Ommi
,
F.
, and
Saboohi
,
Z.
,
2021
, “
Numerical Simulation of a Solar Air Heater Equipped With Wavy and Raccoon-Shaped Fins: The Effect of Fins’ Height
,”
Sustain. Energy Technol. Assess.
,
45
, p.
101227
.
40.
Khanlari
,
A.
,
Sözen
,
A.
,
Afshari
,
F.
,
Şirin
,
C.
,
Tuncer
,
A. D.
, and
Gungor
,
A.
,
2020
, “
Drying Municipal Sewage Sludge With V-Groove Triple-Pass and Quadruple-Pass Solar Air Heaters Along With Testing of a Solar Absorber Drying Chamber
,”
Sci. Total Environ.
,
709
, p.
136198
.
41.
Heydari
,
A.
, and
Mesgarpour
,
M.
,
2018
, “
Experimental Analysis and Numerical Modeling of Solar Air Heater With Helical Flow Path
,”
Sol. Energy
,
162
, pp.
278
288
.
42.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comut. Fluid Dyn.
,
23
(
4
), pp.
305
316
.
43.
Handoyo
,
E. A.
, and
Ichsani
,
D.
,
2016
, “
Numerical Studies on the Effect of Delta-Shaped Obstacles’ Spacing on the Heat Transfer and Pressure Drop in v-Corrugated Channel of Solar Air Heater
,”
Sol. Energy
,
131
, pp.
47
60
.
44.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
A Review of CFD Methodology Used in Literature for Predicting Thermo-Hydraulic Performance of a Roughened Solar Air Heater
,”
Renew. Sust. Energy Rev.
,
54
, pp.
550
605
.
45.
Manjunath
,
M. S.
,
Karanth
,
K. V.
, and
Sharma
,
N. Y.
,
2017
, “
Numerical Analysis of the Influence of Spherical Turbulence Generators on Heat Transfer Enhancement of Flat Plate Solar Air Heater
,”
Energy
,
121
, pp.
616
630
.
46.
Barik
,
A. K.
,
Mohanty
,
A.
,
Senapati
,
J. R.
, and
Awad
,
M. M.
,
2021
, “
Constructal Design of Different Ribs for Thermo-Fluid Performance Enhancement of a Solar Air Heater (SAH)
,”
Int. J. Therm. Sci.
,
160
, p.
106655
.
47.
Alfarawi
,
S.
,
Abdel-Moneim
,
S. A.
, and
Bodalal
,
A.
,
2017
, “
Experimental Investigations of Heat Transfer Enhancement From Rectangular Duct Roughened by Hybrid Ribs
,”
Int. J. Therm. Sci.
,
118
, pp.
123
138
.
48.
Boulemtafes-Boukadoum
,
A.
, and
Benzaoui
,
A.
,
2014
, “
CFD Based Analysis of Heat Transfer Enhancement in Solar Air Heater Provided With Transverse Rectangular Ribs
,”
Energy Procedia
,
50
, pp.
761
772
.
49.
Karwa
,
R.
,
2003
, “
Experimental Studies of Augmented Heat Transfer and Friction in Asymmetrically Heated Rectangular Ducts With Ribs on the Heated Wall in Transverse, Inclined, V-Continuous and V-Discrete Pattern
,”
Int. Commun. Heat Mass Transf.
,
30
(
2
), pp.
241
250
.
50.
Xiao
,
H.
,
Wang
,
J.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Turbulent Heat Transfer Optimization for Solar Air Heater With Variation Method Based on Exergy Destruction Minimization Principle
,”
Int. J. Heat Mass Transf.
,
136
, pp.
1096
1105
.
51.
Colomer
,
G.
,
Costa
,
M.
,
Cònsul
,
R.
, and
Oliva
,
A.
,
2004
, “
Three-Dimensional Numerical Simulation of Convection and Radiation in a Differentially Heated Cavity Using the Discrete Ordinates Method
,”
Int. J. Heat Mass Transf.
,
47
(
2
), pp.
257
269
.
52.
Fiuk
,
J. J.
, and
Dutkowski
,
K.
,
2019
, “
Experimental Investigations on Thermal Efficiency of a Prototype Passive Solar Air Collector With Wavelike Baffles
,”
Sol. Energy
,
188
, pp.
495
506
.
53.
Şevik
,
S.
, and
Abuşka
,
M.
,
2020
, “
Enhancing the Thermal Performance of a Solar Air Heater by Using Single-Pass Semi-Flexible Foil Ducts
,”
Appl. Therm. Eng.
,
179
, p.
115746
.
54.
Ben Amara
,
W.
,
Bouabidi
,
A.
, and
Chrigui
,
M.
,
2023
, “
Experimental Studies and 3D Simulations for the Investigation of Thermal Performances of a Solar Air Heater With Different Spiral-Shaped Baffles Heights
,”
J. Build. Eng.
,
65
, p.
105662
.
55.
Kalaiarasi
,
G.
,
Velraj
,
R.
, and
Swami
,
M. V.
,
2016
, “
Experimental Energy and Exergy Analysis of a Flat Plate Solar Air Heater With a New Design of Integrated Sensible Heat Storage
,”
Energy
,
111
, pp.
609
619
.
56.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2016
, “
Experimental Investigation of Thermal Performance of Flat and V-Corrugated Plate Solar Air Heaters With and Without PCM as Thermal Energy Storage
,”
Energy Convers. Manag.
,
113
, pp.
264
272
.
You do not currently have access to this content.