Abstract

This paper evaluates the potential energy cost savings when high R-value static insulation layers as well as dynamic insulation materials (DIMs) are applied to residential housing located in Barcelona Spain. The analysis considers three dwelling prototypes to characterize the existing housing stock in Barcelona including detached attached and apartments. In addition three vintages for each housing prototype are defined: before 1979 when building envelope insulation took effect in Spain between 1980 and 2006 and after 2006 when the building envelope insulation code became more restrictive. Using a modified 3R2C network model to determine thermal loads the performance of both static and dynamic insulation systems is evaluated when applied to exterior wall for various housing prototypes in Barcelona. The dynamic insulation R-value is selected based on a 2-step control strategy. The analysis results indicate that DIMs with the largest R-value step (i.e. difference between the high and the low R-values) achieve the highest savings in source energy reaching up to 19% reduction in source heating and cooling energy for the entire housing stock of Barcelona. The annual energy savings achieved by DIMs are valued to be 181 M€/year for the entire existing housing stock in Barcelona. In addition electrical peak demand reduction associated with retrofitting exterior walls for the existing Barcelona housing stock can result in future avoidance of building new power plants and can provide additional 144 M€ and 162 M€ for respectively static and dynamic insulation systems. Considering the current energy mix applying dynamic wall insulation systems for Barcelona existing housing stock could reduce annual CO2 emissions by more than 300 000 tons or 6.80% of the total carbon dioxide currently emitted to heat and cool homes.

References

1.
Petersdorff
,
C.
,
Boermans
,
T.
, and
Harnisch
,
J.
,
2006
, “
Mitigation of CO2 Emissions From the EU-15
,”
Environ. Sci. Pollut. Res. Int.
,
13
(
5
), pp.
350
358
. 10.1065/espr2005.12.289
2.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
. 10.1016/j.enbuild.2007.03.007
3.
Francisco Javier Rey Martínez
,
E. V. G.
,
2006
,
Eficiencia energética en edificios: certificación y auditorías energéticas
,
International Thomson Editores Espain
.
4.
IDAE, PROYECTO SECH-SPAHOUSEC
,
2011
,
Análisis del consumo energético en el sector residencial en España
,
Instituto para la Diversificación y Ahorro de la Energía
,
Madrid, Spain
. https://www.idae.es/uploads/documentos/documentos_Informe_SPAHOUSEC_ACC_f68291a3.pdf. Accessed June 8, 2019.
5.
European Commission
,
2010
,
EUROPE 2020. A European Strategy for Smart, Sustainable and Inclusive Growth
,
European Commission
. https://ec.europa.eu/eu2020/pdf/COMPLET%20EN%20BARROSO%20%20%20007%20-%20Europe%202020%20-%20EN%20version.pdf. Accessed June 12, 2019.
6.
European Commission
,
2010
,
Energy 2020. A Strategy for Competitive, Sustainable and Secure Energy
,
European Commission
. https://ec.europa.eu/energy/sites/ener/files/documents/2011_energy2020_en_0.pdf. Accessed June 12, 2019.
7.
McKinsey
,
2009
,
Pathways to a Low-Carbon Economy. Version 2 of the Global Greenhouse Gas Abatement Cost Curve
,
McKinsey & Company
. https://www.mckinsey.com/∼/media/mckinsey/dotcom/client_service/Sustainability/cost%20curve%20PDFs/Pathways_lowcarbon_economy_Version2.ashx. Accessed June 6, 2019.
8.
Jakob
,
M.
,
2006
, “
Marginal Costs and Co-Benefits of Energy Efficiency Investments
,”
Energy Policy
,
34
(
2
), pp.
172
187
. 10.1016/j.enpol.2004.08.039
9.
Verbeeck
,
G.
, and
Hens
,
H.
,
2005
, “
Energy Savings in Retrofitted Dwellings: Economically Viable?
,”
Energy Build.
,
37
(
7
), pp.
747
754
. 10.1016/j.enbuild.2004.10.003
10.
Jelle
,
B. P.
,
Gustavsen
,
A.
, and
Baetens
,
R.
,
2010
, “
The Path to the High Performance Thermal Building Insulation Materials and Solutions of Tomorrow
,”
J. Build. Phys.
,
34
(
2
), pp.
99
123
11.
Jelle
,
B. P.
,
2011
, “
Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities
,”
Energy Build.
,
43
(
9
), pp.
2549
2563
. 10.1016/j.enbuild.2011.05.015
12.
Papadopoulos
,
A. M.
,
2005
, “
State of the Art in Thermal Insulation Materials and Aims for Future Developments
,”
Energy Build.
,
37
(
1
), pp.
77
86
. 10.1016/j.enbuild.2004.05.006
13.
Jelle
,
B. P.
,
Gao
,
T.
,
Telset
,
B. G.
,
Sandberg
,
L. I. C.
,
Grandcolas
,
M.
,
Simon
,
G.
, and
Gustavsen
,
A.
,
2013
, “
Experimental Pathways for Achieving Superinsulation Through Nano Insulation Materials
,”
Conference Proceedings of the 11th International Vacuum Insulation Symposium (IVIS 2013)
,
Dübendorf, Zürich, Switzerland
,
Sep. 19–20
, pp.
99
100
.
14.
Park
,
B.
,
Srubar
,
W. V.
, and
Krarti
,
M.
,
2015
, “
Energy Performance Analysis of Variable Thermal Resistance Envelopes in Residential Buildings
,”
Energy Build.
,
103
, pp.
317
325
. 10.1016/j.enbuild.2015.06.061
15.
Imbabi
,
M. S.-E.
,
Elsarrag
,
E.
, and
O’Hara
,
T. G.
,
2014
, “
Dynamic Insulation Systems
,” United States of America Patent US20140209270A1.
16.
Cui
,
H.
, and
Overend
,
M.
,
2019
, “
A Review of Heat Transfer Characteristics of Switchable Insulation Technologies for Thermally Adaptive Building Envelopes
,”
Energy Build.
,
199
, pp.
427
444
. 10.1016/j.enbuild.2019.07.004
17.
Clark
,
W. W.
,
Schaefer
,
L. A.
,
Knotts
,
W. A.
,
Mo
,
C.
, and
Kimber
,
M.
,
2013
, “
Variable Thermal Insulation
,” United States of America Patent US 20130081786 A1.
18.
Krarti
,
M.
,
2019
, “
Dynamic Insulation Systems for Switchable Building Envelope
,” US Patent 62/879,655.
19.
Dabbagh
,
M.
, and
Krarti
,
M.
,
2019
, “
Evaluation of the Performance for a Dynamic Insulation System Suitable for Switchable Building Envelope
,”
Energy Build.
(in Review)
.
20.
Menyhart
,
K.
, and
Krarti
,
M.
,
2017
, “
Potential Energy Savings From Deployment of Dynamic Insulation Materials for US Residential Buildings
,”
Build. Environ.
,
114
, pp.
203
218
. 10.1016/j.buildenv.2016.12.009
21.
Stazi
,
F.
,
Vegliò
,
A.
,
Di Perna
,
C.
, and
Munafò
,
P.
,
2012
, “
Retrofitting Using a Dynamic Envelope to Ensure Thermal Comfort, Energy Savings and low Environmental Impact in Mediterranean Climates
,”
Energy Build.
,
54
, pp.
350
362
. 10.1016/j.enbuild.2012.07.020
22.
Dimoudi
,
A.
,
Androutsopoulos
,
A.
, and
Lykoudis
,
S.
,
2004
, “
Experimental Work on a Linked, Dynamic and Ventilated, Wall Component
,”
Energy Build.
,
36
(
5
), pp.
443
453
. 10.1016/j.enbuild.2004.01.048
23.
Ascione
,
F.
,
Bianco
,
N.
,
De Stasio
,
C.
,
Mauro
,
G. M.
, and
Vanoli
,
G. P.
,
2015
, “
Dynamic Insulation of the Building Envelope: Numerical Modeling Under Transient Conditions and Coupling With Nocturnal Free Cooling
,”
Appl. Therm. Eng.
,
84
, pp.
1
14
. 10.1016/j.applthermaleng.2015.03.039
24.
Wang
,
S.
, and
Xu
,
X.
,
2006
, “
Simplified Building Model for Transient Thermal Performance Estimation Using GA-Based Parameter Identification
,”
Int. J. Therm. Sci.
,
45
(
4
), pp.
419
432
. 10.1016/j.ijthermalsci.2005.06.009
25.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2012
, “
A Resistance-Capacitance Network Model for the Analysis of the Interactions Between the Energy Performance of Buildings and the Urban Climate
,”
Build. Environ.
,
54
, pp.
116
125
. 10.1016/j.buildenv.2012.01.023
26.
O’Neill
,
Z.
,
Narayanan
,
S.
, and
Brahme
,
R.
,
2010
, “
Model-Based Thermal Load Estimation in Buildings
,”
Proc. SimBuild
,
4
(
1
), pp.
474
481
.
27.
Xu
,
X.
, and
Wang
,
S.
,
2008
, “
A Simplified Dynamic Model for Existing Buildings Using CTF and Thermal Network Models
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1249
1262
. 10.1016/j.ijthermalsci.2007.10.011
28.
Ministerio de Fomento de España
,
2009
,
Código Técnico de la Edificación, Ministerio de Fomento de España
,
Ministerio de Fomento de España
,
Madrid, Spain
. https://www.codigotecnico.org/
29.
Ministerio de Obras Públicas y Urbanismo de España
,
1979
,
NBE-CT-79
,
Ministerio de Obras Públicas y Urbanismo de España
.
30.
Gangolells
,
M.
,
Casals
,
M.
,
Forcada
,
N.
,
Macarulla
,
M.
, and
Cuerva
,
E.
,
2016
, “
Energy Mapping of Existing Building Stock in Spain
,”
J. Clean. Prod.
,
112
, pp.
3895
3904
. 10.1016/j.jclepro.2015.05.105
31.
López-González
,
L. M.
,
López-Ochoa
,
L. M.
,
Las-Heras-Casas
,
J.
, and
García-Lozano
,
C.
,
2016
, “
Energy Performance Certificates as Tools for Energy Planning in the Residential Sector. The Case of La Rioja (Spain)
,”
J. Clean. Prod.
,
137
, pp.
1280
1292
. 10.1016/j.jclepro.2016.08.007
32.
Ampatzi
,
E.
, and
Knight
,
I.
,
2012
, “
Modelling the Effect of Realistic Domestic Energy Demand Profiles and Internal Gains on the Predicted Performance of Solar Thermal Systems
,”
Energy Build.
,
55
, pp.
285
298
. 10.1016/j.enbuild.2012.08.031
33.
Elsland
,
R.
,
Peksen
,
I.
, and
Wietschel
,
M.
,
2014
, “
Are Internal Heat Gains Underestimated in Thermal Performance Evaluation of Buildings?
,”
Energy Procedia
,
62
, pp.
32
41
. 10.1016/j.egypro.2014.12.364
34.
Firląg
,
S.
, and
Zawada
,
B.
,
2013
, “
Impacts of Airflows, Internal Heat and Moisture Gains on Accuracy of Modeling Energy Consumption and Indoor Parameters in Passive Building
,”
Energy Build.
,
64
, pp.
372
383
. 10.1016/j.enbuild.2013.04.024
35.
Knight
,
I.
,
Kreutzer
,
N.
,
Manning
,
M.
,
Swinton
,
M.
, and
Ribberink
,
H.
,
2007
,
European and Canadian non-HVAC Electric and DHW Load Profiles for Use in Simulating the Performance of Residential Cogeneration Systems
,
International Energy Agency, Annex
. http://www.ecbcs.org/Data/publications/EBC_Annex_42_Domestic_Energy_Profiles.pdf. Accessed May 24, 2019.
36.
Odriozola Maritorena
,
M.
,
Lizarraga Sala
,
J. M.
,
Escudero
,
K. M.
,
García
,
C.
,
García-Gáfaro
,
C.
, and
Revilla
,
C. E.
,
2012
, “
Analysis of Ventilation of Dwellings in Spain in Relation to Technical Building Code Using Tracer Gas Techniques
,”
Int. J. Vent.
,
11
(
3
), pp.
271
280
. 10.1080/14733315.2012.11683987
37.
Carrera
,
L.
,
Sisó
,
A.
,
Herena
,
A.
,
Valle
,
M.
,
Casanova
,
M.
, and
González
,
D.
,
2011
,
Evaluación del potencial de climatización con energía solar térmica en edificios
,
Instituto para la diversificación y ahorro energético
,
Madrid, Spain
. https://www.idae.es/uploads/documentos/documentos_11227_e10_climatizacion_ST_edificios_A_ccb82cce.pdf. Accessed May 24, 2019.
38.
IDAE
,
2010
,
Guía Práctica de la Energía
,
Instituto para la Diversificación y Ahorro de la Energía
,
Madrid, Spain
. https://www.idae.es/uploads/documentos/documentos_11406_Guia_Practica_Energia_3ed_A2010_509f8287.pdf. Accessed May 27, 2019.
39.
Albert
,
A. C.
,
Joaquim
,
A.-A.
, and
Pagès-Ramon
,
A.
,
2017
,
Estudio de la distribución del consumo energético residencial para calefacción en España
,
Madrid, Spain
. https://www.fomento.gob.es/recursos_mfom/201804_estudio_distribucion_consumo_energetico_res.pdf. Accessed May 25, 2019.
40.
Domínguez-Muñoz
,
F.
,
Anderson
,
B.
,
Cejudo-López
,
J. M.
, and
Carrillo-Andrés
,
A.
,
2010
, “
Uncertainty in the Thermal Conductivity of Insulation Materials
,”
Energy Build.
,
42
(
11
), pp.
2159
2168
. 10.1016/j.enbuild.2010.07.006
41.
Howell
,
R. H.
,
2017
,
Principles of Heating Ventilating and Air Conditioning: A Textbook With Design Data Based on the 2017 ASHRAE Handbook Fundamentals
,
ASHRAE
,
Atlanta, GA
.
42.
Endesa
,
2018
,
Factores de Emisión Registro de Huella de Carbono, Compensación y Proyectos de Absorción de Dióxido de Carbono
,
Madrid
,
Spain
. https://www.compromisorse.com/upload/estudios/000/252/GUIA-DE-BUENAS-PRACTICAS-PARA-LA-GESTION-DEL-CO2-EN-LA-EMPRESA.pdf. Accessed June 12, 2019.
43.
Swan
,
L. G.
, and
Ugursal
,
V. I.
,
2009
, “
Modeling of End-Use Energy Consumption in the Residential Sector: A Review of Modeling Techniques
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1819
1835
. 10.1016/j.rser.2008.09.033
44.
Kavgic
,
M.
,
Mavrogianni
,
A.
,
Mumovic
,
D.
,
Summerfield
,
A.
,
Stevanovic
,
Z.
, and
Djurovic-Petrovic
,
M.
,
2010
, “
A Review of Bottom-up Building Stock Models for Energy Consumption in the Residential Sector
,”
Building Environ.
,
45
(
7
), pp.
1683
1697
. 10.1016/j.buildenv.2010.01.021
45.
Oladokun
,
M. G.
, and
Odesola
,
I. A.
,
2015
, “
Household Energy Consumption and Carbon Emissions for Sustainable Cities—A Critical Review of Modelling Approaches
,”
Int. J. Sustainable Built Environ.
,
4
(
2
), pp.
231
247
. 10.1016/j.ijsbe.2015.07.005
46.
Eurostat
,
Housing Statistics—Statistics Explained.
https://ec.europa.eu/eurostat/statistics-explained/index.php/Housing_statistics#Type_of_dwelling. Accessed May 14, 2019.
47.
Terés-Zubiaga
,
J.
,
Campos-Celador
,
A.
,
González-Pino
,
I.
, and
Escudero-Revilla
,
C.
,
2015
, “
Energy and Economic Assessment of the Envelope Retrofitting in Residential Buildings in Northern Spain
,”
Energy Build.
,
86
, pp.
194
202
. 10.1016/j.enbuild.2014.10.018
48.
International Energy Agency, and Nuclear Energy Agency
,
2015
,
A Review of the IEA/NEA Projected Costs of Electricity-2015 Edition
,
International Energy Agency, and Nuclear Energy Agency
,
Paris, France
. https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf. Accessed June 14, 2019.
49.
Manuel Hernández Sánchez
,
J.
,
2012
,
Energy Consumption and Associated Emissions of Residential Sector Consumo energético y emisiones asociadas del sector residencial
,
Universitat Politècnica de Catalunya
,
Barcelona, Spain
. https://upcommons.upc.edu/bitstream/handle/2117/15059/Consumo%20energ%C3%A9tico%20y%20emisiones%20asociadas%20del%20sector%20residencial%20-%20Juan%20Manuel%20Hern%C3%A1ndez%20S%C3%A1nchez.pdf. Accessed June 12, 2019.
You do not currently have access to this content.