Abstract

Using a one-dimensional model for transient heat conduction through building enclosure walls, the present research examines the effects of thermophysical building envelop parameters on transient heat exchange, peak cooling, and heating load for northern part of India. For space cooling and heating applications, the thermal performance of four distinct walling systems commonly employed in the climatic conditions of India was examined. Results demonstrate that when the thermal conductivity of the wall increases, the time lag reduces. As wall thickness rises from 230 mm to 310 mm, there is an increase in the time lag during cooling and heating modes. Additionally, the results show that the time lag between conduction and solar load increases as wall thickness increases. As wall thermal mass increased by 20% in cooling mode, the time of peak load was shifted by 2 h. When operating in cooling mode in contrast to heating mode, high thermal mass is more effective in shifting the time of occurrence of peak energy consumption.

References

1.
Van De Graaf
,
T.
,
2014
, “International Energy Agency,”
Handbook of Governance and Security
, pp.
489
503
.
2.
Wang
,
X.
,
Cheng
,
R.
,
Zeng
,
R.
, and
Zhang
,
Y.
,
2014
, “
Ideal Thermal Physical Properties of Building Wall in an Active Room
,”
Indoor Built Environ.
,
23
(
6
), pp.
839
853
.
3.
Wong
,
N. H.
,
Kwang Tan
,
A. Y.
,
Chen
,
Y.
,
Sekar
,
K.
,
Tan
,
P. Y.
,
Chan
,
D.
,
Chiang
,
K.
, and
Wong
,
N. C.
,
2010
, “
Thermal Evaluation of Vertical Greenery Systems for Building Walls
,”
Build. Environ.
,
45
(
3
), pp.
663
672
.
4.
Daouas
,
N.
,
2011
, “
A Study on Optimum Insulation Thickness in Walls and Energy Savings in Tunisian Buildings Based on Analytical Calculation of Cooling and Heating Transmission Loads
,”
Appl. Energy
,
88
(
1
), pp.
156
164
.
5.
Cheng
,
V.
,
Ng
,
E.
, and
Givoni
,
B.
,
2005
, “
Effect of Envelope Colour and Thermal Mass on Indoor Temperatures in Hot Humid Climate
,”
Sol. Energy
,
78
(
4
), pp.
528
534
.
6.
Ochedi
,
E. T.
, and
Taki
,
A.
,
2022
, “
A Framework Approach to the Design of Energy Efficient Residential Buildings in Nigeria
,”
Energy Built Environ.
,
3
(
3
), pp.
384
397
.
7.
Kontoleon
,
K. J.
,
Theodosiou
,
T. G.
, and
Tsikaloudaki
,
K. G.
,
2013
, “
The Influence of Concrete Density and Conductivity on Walls’ Thermal Inertia Parameters Under a Variety of Masonry and Insulation Placements
,”
Appl. Energy
,
112
, pp.
325
337
.
8.
Thormark
,
C.
,
2006
, “
The Effect of Material Choice on the Total Energy Need and Recycling Potential of a Building
,”
Build. Environ.
,
41
(
8
), pp.
1019
1026
.
9.
Mavromatidis
,
L. E.
,
Michel
,
P.
,
El Mankibi
,
M.
, and
Santamouris
,
M.
,
2010
, “
Study on Transient Heat Transfer Through Multilayer Thermal Insulation: Numerical Analysis and Experimental Investigation
,”
Build. Simul.
,
3
(
4
), pp.
279
294
.
10.
Balaji
,
N. C.
,
Mani
,
M.
, and
Venkatarama Reddy
,
B. V.
,
2019
, “
Dynamic Thermal Performance of Conventional and Alternative Building Wall Envelopes
,”
J. Build. Eng.
,
21
, pp.
373
395
.
11.
Ozel
,
M.
, and
Pihtili
,
K.
,
2007
, “
Optimum Location and Distribution of Insulation Layers on Building Walls With Various Orientations
,”
Build. Environ.
,
42
(
8
), pp.
3051
3059
.
12.
Asan
,
H.
,
1998
, “
Effects of Wall’s Insulation Thickness and Position on Time Lag and Decrement Factor
,”
Energy Build.
,
28
(
3
), pp.
299
305
.
13.
Asan
,
H.
,
2000
, “
Investigation of Wall’s Optimum Insulation Position From Maximum Time Lag and Minimum Decrement Factor Point of View
,”
Energy Build.
,
32
(
6
), pp.
197
203
.
14.
Asan
,
H.
,
2006
, “
Numerical Computation of Time Lags and Decrement Factors for Different Building Materials
,”
Build. Environ.
,
41
(
5
), pp.
615
620
.
15.
Asan
,
H.
, and
Sancaktar
,
Y. S.
,
1998
, “
Effects of Wall’s Thermophysical Properties on Time Lag and Decrement Factor
,”
Energy Build.
,
28
(
2
), pp.
159
166
.
16.
Ulgen
,
K.
,
2002
, “
Experimental and Theoretical Investigation of Effects of Wall’s Thermophysical Properties on Time Lag and Decrement Factor
,”
Energy Build.
,
34
(
3
), pp.
273
278
.
17.
Kaşka
,
Ö
, and
Yumrutaş
,
R.
,
2009
, “
Experimental Investigation for Total Equivalent Temperature Difference (TETD) Values of Building Walls and Flat Roofs
,”
Energy Convers. Manage.
,
50
(
11
), pp.
2818
2825
.
18.
Mavromatidis
,
L. E.
,
Mankibi
,
M. E. L.
,
Michel
,
P.
, and
Santamouris
,
M.
,
2012
, “
Numerical Estimation of Time Lags and Decrement Factors for Wall Complexes Including Multilayer Thermal Insulation, in Two Different Climatic Zones
,”
Appl. Energy
,
92
, pp.
480
491
.
19.
Shaik
,
S.
, and
Talanki Puttaranga Setty
,
A. B.
,
2016
, “
Influence of Ambient Air Relative Humidity and Temperature on Thermal Properties and Unsteady Thermal Response Characteristics of Laterite Wall Houses
,”
Build. Environ.
,
99
, pp.
170
183
.
20.
Ozel
,
M.
, and
Ozel
,
C.
,
2012
, “
Effects of Wall Orientation and Thermal Insulation on Time Lag and Decrement Factor
,”
9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
July 16–18
, Malta
, pp.
680
684
.
21.
Fathipour
,
R.
, and
Hadidi
,
A.
,
2017
, “
Analytical Solution for the Study of Time Lag and Decrement Factor for Building Walls in Climate of Iran
,”
Energy
,
134
, pp.
167
180
.
22.
Ruivo
,
C. R.
,
Ferreira
,
P. M.
, and
Vaz
,
D. C.
,
2013
, “
On the Error of Calculation of Heat Gains Through Walls by Methods Using Constant Decrement Factor and Time Lag Values
,”
Energy Build.
,
60
, pp.
252
261
.
23.
Roucoult
,
J. M.
,
Douzane
,
O.
, and
Langlet
,
T.
,
1999
, “
Incorporation of Thermal Inertia in the Aim of Installing a Natural Nighttime Ventilation System in Buildings
,”
Energy Build.
,
29
(
2
), pp.
129
133
.
24.
Feng
,
Y.
,
2004
, “
Thermal Design Standards for Energy Efficiency of Residential Buildings in Hot Summer/Cold Winter Zones
,”
Energy Build.
,
36
(
12
), pp.
1309
1312
.
25.
Balaras
,
C. A.
,
1996
, “
The Role of Thermal Mass on the Cooling Load of Buildings: An Overview of Computational Methods
,”
Energy Build.
,
24
(
1
), pp.
1
10
.
26.
Karlsson
,
J.
,
Wadsö
,
L.
, and
Öberg
,
M.
,
2013
, “
A Conceptual Model That Simulates the Influence of Thermal Inertia in Building Structures
,”
Energy Build.
,
60
, pp.
146
151
.
27.
Aste
,
N.
,
Angelotti
,
A.
, and
Buzzetti
,
M.
,
2009
, “
The Influence of the External Walls Thermal Inertia on the Energy Performance of Well Insulated Buildings
,”
Energy Build.
,
41
(
11
), pp.
1181
1187
.
28.
Verbeke
,
S.
, and
Audenaert
,
A.
,
2018
, “
Thermal Inertia in Buildings: A Review of Impacts Across Climate and Building Use
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
2300
2318
.
29.
Sharaf
,
F.
,
2020
, “
The Impact of Thermal Mass on Building Energy Consumption: A Case Study in Al Mafraq City in Jordan
,”
Cogent. Eng.
,
7
(
1
), p.
1804092
.
30.
Quagraine
,
K. A.
,
Ramde
,
E. W.
,
Fiagbe
,
Y. A. K.
, and
Quansah
,
D. A.
,
2020
, “
Evaluation of Time Lag and Decrement Factor of Walls in a Hot Humid Tropical Climate
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100758
.
31.
Balaji
,
N. C.
,
Mani
,
M.
, and
Venkatarama Reddy
,
B. V.
,
2013
, “
Thermal Performance of the Building Walls
,”
1st IBPSA Italy Conference, Building Simulation—2013 (BSA 2013)
,
Italy
,
Jan. 30–Feb. 1
, pp.
151
159
.
32.
Loveday
,
D. L.
, and
Taki
,
A. H.
,
1996
, “
Convective Heat Transfer Coefficients at a Plane Surface on a Full-Scale Building Facade
,”
Int. J. Heat Mass Transfer
,
39
(
8
), pp.
1729
1742
.
33.
Hagishima
,
A.
, and
Tanimoto
,
J.
,
2003
, “
Field Measurements for Estimating the Convective Heat Transfer Coefficient at Building Surfaces
,”
Build. Environ.
,
38
(
7
), pp.
873
881
.
34.
UNE-EN ISO 6946
,
2012
, “
Building Components and Building Elements—Thermal Resistance and Thermal Transmittance
,” p.
36
.
35.
Yumrutaş
,
R.
,
Kaşka
,
Ö
, and
Yildirim
,
E.
,
2007
, “
Estimation of Total Equivalent Temperature Difference Values for Multilayer Walls and Flat Roofs by Using Periodic Solution
,”
Build. Environ.
,
42
(
5
), pp.
1878
1885
.
36.
Kontoleon
,
K. J.
, and
Bikas
,
D. K.
,
2007
, “
The Effect of South Wall’s Outdoor Absorption Coefficient on Time Lag, Decrement Factor and Temperature Variations
,”
Energy Build.
,
39
(
9
), pp.
1011
1018
.
37.
ASHRAE
,
1997
,
ASHRAE Handbook Fundamentals and Data Book
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
, pp.
90
91
.
38.
Ghosal
,
M. K.
, and
Mishra
,
J. N.
,
2009
, “
Estimation and Experimental Validation of Solar Radiation by ASHRAE Method for Bhubaneswar (India)
,”
Int. J. Agric. Eng.
,
2
, pp.
176
181
.
39.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
40.
Jin
,
X.
,
Zhang
,
X.
,
Cao
,
Y.
, and
Wang
,
G.
,
2012
, “
Thermal Performance Evaluation of the Wall Using Heat Flux Time Lag and Decrement Factor
,”
Energy Build.
,
47
, pp.
369
374
.
41.
Vallejo-Coral
,
E. C.
,
Rivera-Solorio
,
C. I.
,
Gijón-Rivera
,
M.
, and
Zúñiga-Puebla
,
H. F.
,
2019
, “
Theoretical and Experimental Development of Cooling Load Temperature Difference Factors to Calculate Cooling Loads for Buildings in Warm Climates
,”
Appl. Therm. Eng.
,
150
, pp.
576
590
.
42.
S.I. Edition
,
1993
,
ASHRAE Handbook
,
Stephen Comstock
,
Atlanta, GA
.
43.
Threlkeld
,
J. L.
,
1962
,
Thermal Environmental Engineering
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
44.
Darlington
,
R. B.
, and
Hayes
,
A. F.
,
2017
,
Regression Analysis and Linear Models
,
Guilford Press
,
New York
, pp.
603
611
.
45.
Asuero
,
A. G.
,
Sayago
,
A.
, and
González
,
A. G.
,
2006
, “
The Correlation Coefficient: An Overview
,”
Crit. Rev. Anal. Chem.
,
36
(
1
), pp.
41
59
.
You do not currently have access to this content.