Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Thermal energy storage (TES) plays a pivotal role in integrating renewable energy. Nevertheless, there are major challenges in the diffusion of TES such as selection of the optimum system size, system integration, and optimization. A key target for using TES is to increase the thermal self-sufficiency of a building or an entire district. Thermal self-sufficiency, unlike total energy self-sufficiency, concerns space heating and domestic hot water exclusively. Thus, it measures the ability of a system to meet its heating demand from local renewable energy sources. Thermal self-sufficiency is an important metric for practitioners and researchers in the design, optimization, and evaluation of energy systems, especially when considering TES. Unfortunately, no comprehensive method exists in the literature for determining thermal self-sufficiency with TES. Energy profiles and simulations are required to determine it. This article aims to close this gap and presents a new method for evaluating thermal self-sufficiency for a building with a TES. Using this approach, the upper and lower limits of the building thermal self-sufficiency are derived for various heat storage capacities and annual heat demands, demonstrating the impact of a TES on the system. A mathematical model applied to a case study of a single-family house illustrates the effect of different TES capacities on the thermal self-sufficiency: small TES significantly improves the thermal self-sufficiency, with a 20-kWh TES reaching 50% thermal self-sufficiency, while higher thermal self-sufficiency values require exponentially larger storage capacities.

References

1.
Santamouris
,
M.
, and
Vasilakopoulou
,
K.
,
2021
, “
Present and Future Energy Consumption of Buildings: Challenges and Opportunities Towards Decarbonisation
,”
e-Prime
,
1
.
2.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build
,
40
(
3
), pp.
394
398
.
3.
Amasyali
,
K.
, and
El-Gohary
,
N. M.
,
2018
, “
A Review of Data-Driven Building Energy Consumption Prediction Studies
,”
Renewable Sustainable Energy Rev.
,
81
(
1
), pp.
1192
1205
.
4.
SFOE
,
2023
, “Buildings.” https://www.bfe.admin.ch/bfe/en/home/efficiency/buildings.html/, Accessed September 13, 2023.
5.
FSO
,
2023
, “Energy Sector, Heating System and Energy Sources.” https://www.bfs.admin.ch/bfs/en/home/statistics/construction-housing/buildings/energy-sector.html, Accessed September 13, 2023.
6.
IEA
,
2022
, “
World Energy Outlook 2022
.”
7.
Zhang
,
S.
,
Ocłoń
,
P.
,
Klemeš
,
J. J.
,
Michorczyk
,
P.
,
Pielichowska
,
K.
, and
Pielichowski
,
K.
,
2022
, “
Renewable Energy Systems for Building Heating, Cooling and Electricity Production With Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
165
, p.
112560
.
8.
Doroudchi
,
E.
,
Khajeh
,
H.
, and
Laaksonen
,
H.
,
2022
, “
Increasing Self-Sufficiency of Energy Community by Common Thermal Energy Storage
,”
IEEE Access
,
10
.
9.
Sadeghi
,
G.
,
2022
, “
Energy Storage on Demand: Thermal Energy Storage Development, Materials, Design, and Integration Challenges
,”
Energy Storage Mater.
,
46
, pp.
192
222
.
10.
Li
,
Z.
,
Lu
,
Y.
,
Huang
,
R.
,
Chang
,
J.
,
Yu
,
X.
,
Jiang
,
R.
,
Yu
,
X.
, and
Roskilly
,
A. P.
,
2021
, “
Applications and Technological Challenges for Heat Recovery, Storage and Utilisation With Latent Thermal Energy Storage
,”
Appl. Energy
,
283
, p.
116277
.
11.
Alva
,
G.
,
Lin
,
Y.
, and
Fang
,
G.
,
2018
, “
An Overview of Thermal Energy Storage Systems
,”
Energy
,
144
, pp.
341
378
.
12.
Jebamalai
,
J. M.
,
Marlein
,
K.
, and
Laverge
,
J.
,
2020
, “
Influence of Centralized and Distributed Thermal Energy Storage on District Heating Network Design
,”
Energy
,
202
.
13.
Knudsen
,
B. R.
,
Rohde
,
D.
, and
Kauko
,
H.
,
2021
, “
Thermal Energy Storage Sizing for Industrial Waste-Heat Utilization in District Heating: A Model Predictive Control Approach
,”
Energy
,
234
.
14.
Enescu
,
D.
,
Chicco
,
G.
,
Porumb
,
R.
, and
Seritan
,
G.
,
2020
, “
Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends
,”
Energies (Basel)
,
13
(
2
), p.
340
.
15.
Ge
,
Z.
,
Li
,
Y.
,
Li
,
D.
,
Sun
,
Z.
,
Jin
,
Y.
,
Liu
,
C.
,
Li
,
C.
,
Leng
,
G.
, and
Ding
,
Y.
,
2014
, “
Thermal Energy Storage: Challenges and the Role of Particle Technology
,”
Particuology
,
15
, pp.
2
8
.
16.
OED
,
2024
, “Oxford English Dictionary.” https://www.oed.com/search/dictionary/?scope=Entries&q=self-sufficient, Accessed September 14, 2023.
17.
Mazur
,
Ł
,
Cieślik
,
S.
, and
Czapp
,
S.
,
2023
, “
Trends in Locally Balanced Energy Systems Without the Use of Fossil Fuels: A Review
,”
Energies (Basel)
,
16
(
12
), p.
4551
.
18.
Rae
,
C.
, and
Bradley
,
F.
,
2012
, “
Energy Autonomy in Sustainable Communities—A Review of Key Issues
,”
Renewable Sustainable Energy Rev.
,
16
(
9
), pp.
6497
6506
.
19.
Bentley
,
E.
,
Kotter
,
R.
,
Wang
,
Y.
,
Das
,
R.
,
Putrus
,
G.
,
Van Der Hoogt
,
J.
,
Van Bergen
,
E.
,
Warmerdam
,
J.
,
Heller
,
R.
, and
Jablonska
,
B.
,
2019
, “
Pathways to Energy Autonomy—Challenges and Opportunities
,”
Int. J. Environ. Stud.
,
76
(
6
), pp.
893
921
.
20.
Reis
,
I. F. G.
,
Gonçalves
,
I.
,
Lopes
,
M. A. R.
, and
Antunes
,
C. H.
,
2021
, “
Assessing the Influence of Different Goals in Energy Communities' Self-Sufficiency—An Optimized Multiagent Approach
,”
Energies (Basel)
,
14
(
4
), p.
989
.
21.
Engelken
,
M.
,
Römer
,
B.
,
Drescher
,
M.
, and
Welpe
,
I.
,
2016
, “
Transforming the Energy System: Why Municipalities Strive for Energy Self-Sufficiency
,”
Energy Policy
,
98
, pp.
365
377
.
22.
Woo
,
T.
,
Tayerani Charmchi
,
A. S.
,
Ifaei
,
P.
,
Heo
,
S.
,
Nam
,
K.
, and
Yoo
,
C.
,
2022
, “
Three Energy Self-Sufficient Networks of Wastewater Treatment Plants Developed by Nonlinear bi-Level Optimization Models in Jeju Island
,”
J. Cleaner Prod.
,
379
, p.
134465
.
23.
Zepter
,
J. M.
,
Engelhardt
,
J.
,
Gabderakhmanova
,
T.
, and
Marinelli
,
M.
,
2022
, “
Re-Thinking the Definition of Self-Sufficiency in Systems with Energy Storage
,”
SEST 2022—Fifth International Conference on Smart Energy Systems and Technologies
,
Eindhoven, Netherlands
,
May 9
, pp.
1
6
.
24.
de Graaf
,
F.
, and
Goddek
,
S.
,
2019
, “Smarthoods: Aquaponics Integrated Microgrids,”
Aquaponics Food Production Systems
,
S.
Goddek
,
A.
Joyce
,
B.
Kotzen
, and
G. M.
Burnell
, eds.,
Springer International Publishing
,
Cham
, pp.
379
392
.
25.
Musiał
,
M.
,
Lichołai
,
L.
, and
Katunský
,
D.
,
2023
, “
Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings
,”
Energies (Basel)
,
16
(
11
), p.
4442
.
26.
Kiraly
,
A.
,
Pahor
,
B.
, and
Kravanja
,
Z.
,
2013
, “
Achieving Energy Self-Sufficiency by Integrating Renewables Into Companies' Supply Networks
,”
Energy
,
55
, pp.
46
57
.
27.
Nemś
,
M.
,
Nemś
,
A.
,
Kasperski
,
J.
, and
Pomorski
,
M.
,
2017
, “
Thermo-Hydraulic Analysis of Heat Storage Filled With the Ceramic Bricks Dedicated to the Solar Air Heating System
,”
Materials
,
10
(
8
), p.
940
.
28.
Famuyibo
,
A.
,
Duffy
,
A.
, and
Strachan
,
P.
,
2012
, “
Developing Archetypes for Domestic Dwellings—An Irish Case Study
,”
Energy Build.
,
50
, pp.
150
157
.
29.
Sokol
,
J.
,
Cerezo Davila
,
C.
, and
Reinhart
,
C. F.
,
2017
, “
Validation of a Bayesian-Based Method for Defining Residential Archetypes in Urban Building Energy Models
,”
Energy Build.
,
134
, pp.
11
24
.
30.
EN 12977-1:2018
, “Thermal Solar Systems and Components—Custom Built Systems—Part 1: General Requirements for Solar Water Heaters and Combisystems.”
31.
SN 546385/2:2015
. Installations d´eau chaude sanitaire dans les bâtiments—Besoins en eau chaude, exigences globales et dimensionnement.
32.
npro.energy
,
2024
, “
Heat Loss in Heat Storages—nPro
.” https://www.npro.energy/main/en/help/heat-storage-loss, Accessed January 8, 2024.
33.
Núria
,
D. N.
,
Richard
,
L.
, and
Philipp
,
L.
,
2024
, “
TSS Model, GitHub 2511294
.” https://github.com/nuriada/tss/blob/main/TSS_Model_jan24.py, Accessed January 16, 2024.
34.
Berger
,
M.
,
Schroeteler
,
B.
,
Sperle
,
H.
,
Püntener
,
P.
,
Felder
,
T.
, and
Worlitschek
,
J.
,
2022
, “
Assessment of Residential Scale Renewable Heating Solutions With Thermal Energy Storages
,”
Energy
,
244
, p. 122618.
35.
MeteoSwiss
,
2024
, “
Federal Office of Meteorology and Climatology
,” Swiss Federal Authorities. https://www.meteoswiss.admin.ch/, Accessed December 11, 2023.
36.
Jean
,
J.
,
Brown
,
P. R.
,
Jaffe
,
R. L.
,
Buonassisi
,
T.
, and
Bulović
,
V.
,
2015
, “
Pathways for Solar Photovoltaics
,”
Energy Environ. Sci.
,
8
(
4
), pp.
1200
1219
.
37.
Chen
,
T.
,
An
,
Y.
, and
Heng
,
C. K.
,
2022
, “
A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects
,”
Sustainability
,
14
(
16
), p.
10160
.
You do not currently have access to this content.