Abstract

Laser surface melting (LSM) has been widely reported for corrosion protection to magnesium alloys. However, magnesium alloys are much better known as implant materials; thus, in this work, cell adhesion behavior of AZ91D magnesium alloy by LSM treatment was investigated. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), contact angle measurements, hydrogen evolution tests, and cell culture study were used to characterize the microstructure, composition, surface energy, biodegradability, cell adhesion behavior, and cytocompatibility, respectively. Results showed that the biodegradation rate decreased, the surface energy (42.9 ± 1.3 mJ/m2, N = 10) was higher than that of the as-received one (23.1 ± 1.2 mJ/m2, N = 10), and the average surface roughness value (Ra) increased from 0.16 ± 0.02 μm to 2.53 ± 0.03 μm after LSM treatment. The laser-surface-treated magnesium alloys presented good cytocompatibility, and the cell adhesion on the surface of magnesium alloy was improved because of the higher surface energy, lower degradation, and increased roughness.

References

1.
Liu
Y.
,
Pang
S.
,
Li
H.
,
Hu
Q.
,
Chen
B.
, and
Zhang
T.
, “
Formation and Properties of Ti-Based Ti-Zr-Cu-Fe-Sn-Si Bulk Metallic Glasses with Different (Ti+ Zr)/Cu Ratios for Biomedical Application
,”
Intermetallics
72
(May
2016
):
36
43
. https://doi.org/10.1016/j.intermet.2016.01.007
2.
Xiao
D.-M.
,
Yang
Y.-Q.
,
Su
X.-B.
,
Wang
D.
, and
Luo
Z.-Y.
, “
Topology Optimization of Microstructure and Selective Laser Melting Fabrication for Metallic Biomaterial Scaffolds
,”
Transactions of Nonferrous Metals Society of China
22
, no. 
10
(October
2012
):
2554
2561
. https://doi.org/10.1016/S1003-6326(11)61500-8
3.
Kumari
R.
and
Majumdar
J. D.
, “
Microstructural Characterization of Multilayered Coating on Titanium Based Alloy (Ti-6Al-4V) Substrate for Bio-Implant Application
,”
Advanced Science Letters
22
, no. 
1
(January
2016
):
256
260
. https://doi.org/10.1166/asl.2016.6793
4.
Staiger
M. P.
,
Pietak
A. M.
,
Huadmai
J.
, and
Dias
G.
, “
Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
,”
Biomaterials
27
, no. 
9
(March
2006
):
1728
1734
. https://doi.org/10.1016/j.biomaterials.2005.10.003
5.
Ren
L.
and
Yang
K.
, “
Bio-Functional Design for Metal Implants, a New Concept for Development of Metallic Biomaterials
,”
Journal of Materials Science & Technology
29
, no. 
11
(November
2013
):
1005
1010
. https://doi.org/10.1016/j.jmst.2013.09.008
6.
Haase
K.
and
Rouhi
G.
, “
Prediction of Stress Shielding around an Orthopedic Screw: Using Stress and Strain Energy Density as Mechanical Stimuli
,”
Computers in Biology and Medicine
43
, no. 
11
(November
2013
):
1748
1757
. https://doi.org/10.1016/j.compbiomed.2013.07.032
7.
Zhang
Q.-H.
,
Cossey
A.
, and
Tong
J.
, “
Stress Shielding in Periprosthetic Bone Following a Total Knee Replacement: Effects of Implant Material, Design and Alignment
,”
Medical Engineering & Physics
38
, no. 
12
(December
2016
):
1481
1488
. https://doi.org/10.1016/j.medengphy.2016.09.018
8.
Gross
S.
and
Abel
E. W.
, “
A Finite Element Analysis of Hollow Stemmed Hip Prostheses as a Means of Reducing Stress Shielding of the Femur
,”
Journal of Biomechanics
34
, no. 
8
(August
2001
):
995
1003
. https://doi.org/10.1016/S0021-9290(01)00072-0
9.
Li
L.
,
Gao
J.
, and
Wang
Y.
, “
Evaluation of Cyto-Toxicity and Corrosion Behavior of Alkali-Heat-Treated Magnesium in Simulated Body Fluid
,”
Surface and Coatings Technology
185
, no. 
1
(July
2004
):
92
98
. https://doi.org/10.1016/j.surfcoat.2004.01.004
10.
Krämer
M.
,
Schilling
M.
,
Eifler
R.
,
Hering
B.
,
Reifenrath
J.
,
Besdo
S.
,
Windhagen
H.
,
Willbold
E.
, and
Weizbauer
A.
, “
Corrosion Behavior, Biocompatibility and Biomechanical Stability of a Prototype Magnesium-Based Biodegradable Intramedullary Nailing System
,”
Materials Science and Engineering: C
59
(February
2016
):
129
135
. https://doi.org/10.1016/j.msec.2015.10.006
11.
Sunil
B. R.
,
Kumar
A. A.
,
Kumar
T. S. S.
, and
Chakkingal
U.
, “
Role of Biomineralization on the Degradation of Fine Grained AZ31 Magnesium Alloy Processed by Groove Pressing
,”
Materials Science and Engineering: C
33
, no. 
3
(April
2013
):
1607
1615
. https://doi.org/10.1016/j.msec.2012.12.095
12.
Song
G.
, “
Control of Biodegradation of Biocompatable Magnesium Alloys
,”
Corrosion Science
49
, no. 
4
(April
2007
):
1696
1701
. https://doi.org/10.1016/j.corsci.2007.01.001
13.
Kannan
M. B.
and
Raman
R. K. S.
, “
In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid
,”
Biomaterials
29
, no. 
15
(May
2008
):
2306
2314
. https://doi.org/10.1016/j.biomaterials.2008.02.003
14.
Song
G.
and
Atrens
A.
, “
Understanding Magnesium Corrosion–A Framework for Improved Alloy Performance
,”
Advanced Engineering Materials
5
, no. 
12
(January
2004
):
837
858
. https://doi.org/10.1002/adem.200310405
15.
Shi
Z.
,
Liu
M.
, and
Atrens
A.
, “
Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation
,”
Corrosion Science
52
, no. 
2
(February
2010
):
579
588
. https://doi.org/10.1016/j.corsci.2009.10.016
16.
Pan
C.
,
Hu
Y.
,
Hou
Y.
,
Liu
T.
,
Lin
Y.
,
Ye
W.
,
Hou
Y.
, and
Gong
T.
, “
Corrosion Resistance and Biocompatibility of Magnesium Alloy Modified by Alkali Heating Treatment Followed by the Immobilization of Poly (Ethylene Glycol), Fibronectin and Heparin
,”
Materials Science and Engineering: C
70
(January
2017
):
438
449
. https://doi.org/10.1016/j.msec.2016.09.028
17.
Silva
C. L. P.
,
Oliveira
A. C.
,
Costa
C. G. F.
,
Figueiredo
R. B.
,
de Fátima Leite
M.
,
Pereira
M. M.
,
Lins
V. F. C.
, and
Langdon
T. G.
, “
Effect of Severe Plastic Deformation on the Biocompatibility and Corrosion Rate of Pure Magnesium
,”
Journal of Materials Science
52
, no. 
10
(May
2017
):
5992
6003
. https://doi.org/10.1007/s10853-017-0835-x
18.
Huang
W.
,
Xu
B.
,
Yang
W.
,
Zhang
K.
,
Chen
Y.
,
Yin
X.
,
Liu
Y.
,
Ni
Z.
, and
Pei
F.
, “
Corrosion Behavior and Biocompatibility of Hydroxyapatite/Magnesium Phosphate/Zinc Phosphate Composite Coating Deposited on AZ31 Alloy
,”
Surface and Coatings Technology
326
(October
2017
):
270
280
. https://doi.org/10.1016/j.surfcoat.2017.07.066
19.
Kang
M.-H.
,
Jang
T.-S.
,
Jung
H.-D.
,
Kim
S.-M.
,
Kim
H.-E.
,
Koh
Y.-H.
, and
Song
J.
, “
Poly(Ether Imide)-Silica Hybrid Coatings for Tunable Corrosion Behavior and Improved Biocompatibility of Magnesium Implants
,”
Biomedical Materials
11
, no. 
3
(June
2016
):
1
12
. https://doi.org/10.1088/1748-6041/11/3/035003
20.
Wang
L.
,
Zhou
J.
,
Liang
J.
, and
Chen
J.
, “
Microstructure and Corrosion Behavior of Plasma Electrolytic Oxidation Coated Magnesium Alloy Pre-treated by Laser Surface Melting
,”
Surface and Coatings Technology
206
, no. 
13
(February
2012
):
3109
3115
. https://doi.org/10.1016/j.surfcoat.2011.12.040
21.
Liu
C.
,
Liang
J.
,
Zhou
J.
,
Wang
L.
, and
Li
Q.
, “
Effect of Laser Surface Melting on Microstructure and Corrosion Characteristics of AM60B Magnesium Alloy
,”
Applied Surface Science
343
(July
2015
):
133
140
. https://doi.org/10.1016/j.apsusc.2015.03.067
22.
Paital
S. R.
and
Dahotre
N. B.
, “
Wettability and Kinetics of Hydroxyapatite Precipitation on a Laser-Textured Ca-P Bioceramic Coating
,”
Acta Biomaterialia
5
, no. 
7
(September
2009
):
2763
2772
. https://doi.org/10.1016/j.actbio.2009.03.004
23.
Chan
C.-W.
,
Lee
S.
,
Smith
G.
,
Sarri
G.
,
Ng
C.-H.
,
Sharba
A.
, and
Man
H.-C.
, “
Enhancement of Wear and Corrosion Resistance of Beta Titanium Alloy by Laser Technology
,”
Applied Surface Science
367
(March
2016
):
80
90
. https://doi.org/10.1016/j.apsusc.2016.01.091
24.
Shi
Z.
and
Atrens
A.
, “
An Innovative Specimen Configuration for the Study of Mg Corrosion
,”
Corrosion Science
53
, no. 
1
(January
2011
):
226
246
. https://doi.org/10.1016/j.corsci.2010.09.016
25.
Liu
X.
,
Lim
J. Y.
,
Donahue
H. J.
,
Dhurjati
R.
,
Mastro
A. M.
, and
Vogler
E. A.
, “
Influence of Substratum Surface Chemistry/Energy and Topography on the Human Fetal Osteoblastic Cell Line hFOB 1.19: Phenotypic and Genotypic Responses Observed In Citro
,”
Biomaterials
28
, no. 
31
(November
2007
):
4535
4550
. https://doi.org/10.1016/j.biomaterials.2007.06.016
26.
Kim
W.-C.
,
Han
K.-H.
,
Kim
J.-G.
,
Yang
S.-J.
,
Seok
H.-K.
,
Han
H.-S.
, and
Kim
Y.-Y.
, “
Effect of Surface Area on Corrosion Properties of Magnesium for Biomaterials
,”
Metals and Materials International
19
, no. 
5
(September
2013
):
1131
1137
. https://doi.org/10.1007/s12540-013-5032-0
27.
Keim
S.
,
Brunner
J. G.
,
Fabry
B.
, and
Virtanen
S.
, “
Control of Magnesium Corrosion and Biocompatibility with Biomimetic Coatings
,”
Journal of Biomedical Materials Research Part B: Applied Biomaterials
96B
, no. 
1
(November
2010
):
84
90
. https://doi.org/10.1002/jbm.b.31742
28.
Lin
B.
,
Zhong
M.
,
Zheng
C.
,
Cao
L.
,
Wang
D.
,
Wang
L.
,
Liang
J.
, and
Cao
B.
, “
Preparation and Characterization of Dopamine-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy
,”
Surface and Coatings Technology
281
(November
2015
):
82
88
. https://doi.org/10.1016/j.surfcoat.2015.09.033
This content is only available via PDF.
You do not currently have access to this content.